MENGIDEALISASIKAN PENAMPANG LINTANG BULUH BAMBU MENJADI BENTUK GEOMETRI CONIC UNTUK MENGHITUNG SIFAT PENAMPANGNYA

Effendi Tri Bahtiar, Asep Denih, Lina Karlinasari, Gustian Rama Putra, Naresworo Nugroho, Sulistyono Sulistyono

Abstract


Seorang desainer perlu menyederhanakan variasi bentuk penampang bambu mengikuti geometri ideal yang paling mendekati bentuk aktualnya agar analisis struktur konstruksi bambu dapat dilakukan. Geometri penampang buluh bambu bervariasi dan menyerupai cincin conic seperti lingkaran, elips, atau bulat telur. Bentuk penampang conic yang paling pas yaitu yang paling menyerupai bentuk penampang aktual bambu perlu dipertimbangkan. Studi ini memformulasikan persamaan-persamaan matematis untuk menghitung sifat penampang buluh bambu (termasuk luas, momen pertama penampang, centroid, dan momen inersia) yang disesuaikan dengan bentuk cincin lingkaran, elips, dan bulat telur. Ketebalan, diameter, sumbu mayor, dan sumbu minor empat jenis bambu yaitu bambu tali (Gigantochloa apus), bambu ampel (Bambusa vulgaris), bambu andong (Gigantochloa pseudoarundinacea), dan bambu mayan (Gigantochloa robusta) diukur dan kemudian nilai-nilainya disubstitusikan ke dalam persamaan yang terbentuk untuk menghasilkan wilayah sifat-sifat penampang setiap spesies bambu.


Keywords


bamboo construction, conic, cross-sectional properties, structural analysis, strength of material

References


[ASTM] American Society for Testing and Materials. (2017). ASTM D2915 Standard Practice for Sampling and Data-Analysis for Structural Wood and Wood-Based Products. American Society for Testing and Materials. https://doi.org/10.1520/D2915-17.2

Andre, J.-P. (1998). A study of the vascular organization of bamboos (Poaceae-Bambuseae) using a Microcasting method. IAWA Journal, 19(3), 265–278.

Bahtiar, E. T., Imanullah, A. P., Hermawan, D., Nugroho, N., & Abdurachman. (2019). Structural grading of three sympodial bamboo culms (Hitam, Andong, and Tali) subjected to axial compressive load. Engineering Structures, 181, 233–245. https://doi.org/10.1016/j.engstruct.2018.12.026

Bahtiar, E. T., Malkowska, D., Trujillo, D., & Nugroho, N. (2021). Experimental study on buckling resistance of Guadua angustifolia bamboo column. Engineering Structures, 228, 111548. https://doi.org/10.1016/j.engstruct.2020.111548

Bahtiar, E. T., Nugroho, N., Surjokusumo, S., & Karlinasari, L. (2013). Eccentricity Effect on Bamboo’s Flexural Properties. Journal of Biological Sciences, 13(2), 82–87. https://doi.org/10.3923/jbs.2013.82.87

Bahtiar, E. T., Trujillo, D., & Nugroho, N. (2020). Compression resistance of short members as the basis for structural grading of Guadua angustifolia. Construction and Building Materials, 249, 118759. https://doi.org/10.1016/j.conbuildmat.2020.118759

Chuma, S., Hirohashi, M., Ohgama, T., & Kasahara, Y. (1990). Composite structure and tensile properties of Mousou bamboo. Journal of the Society of Materials Science, Japan, 39(442), 847–851. https://doi.org/10.2472/jsms.39.847

Firmanti, A., Bachtiar, E. T., Surjokusumo, S., Komatsu, K., & Kawai, S. (2005). Mechanical stress grading of tropical timbers without regard to species. Journal of Wood Science, 51(4). https://doi.org/10.1007/s10086-004-0661-z

Gere, J. M., & Timoshenko, S. P. (1991). Mechanics of Materials (4th ed.). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4899-3124-5

Inoue, A., Sakamoto, S., Suga, H., & Kitahara, F. (2011). Estimation of culm volume for bamboo, Phyllostachys bambusoides, by two-way volume equation. Biomass and Bioenergy, 35(7), 2666–2673. https://doi.org/10.1016/j.biombioe.2011.03.003

International Organization for Standardization. ISO 19624:2018: Bamboo structures — Grading of bamboo culms — Basic principles and procedures (2018). Retrieved from https://www.iso.org/standard/65528.html

Janssen, J. (1991). Mechanical Properties of Bamboo. Dordecht, The Netherlands: Kluwer Academic Publishers.

Javadian, A., Smith, I. F. C., Saeidi, N., & Hebel, D. E. (2019). Mechanical properties of bamboo through measurement of culm physical properties for composite fabrication of structural concrete reinforcement. Frontiers in Materials, 6(February), 1–18. https://doi.org/10.3389/fmats.2019.00015

Liese, W. (1985). Anatomy and Properties of Bamboo. Proceedings of the International Bamboo Workshop, 196–208.

Liese, Walter. (2002). The Anatomy of Bamboo Culms. Retrieved from https://brill.com/view/title/7815

Liese, Walter, & Tang, T. K. H. (2015). Properties of the Bamboo Culm. In Bamboo, Tropical Forestry 10 (pp. 227–256). https://doi.org/10.1007/978-3-319-14133-6_8

Liu, P., Zhou, Q., Fu, F., & Li, W. (2022). Bending Strength Design Method of Phyllostachys edulis Bamboo Based on Classification. Polymers, 14(7), 1418. https://doi.org/10.3390/polym14071418

Mohmod, A. L., Amin, A. H., Kasim, J., & Jusuh, M. Z. (1992). Effects of anatomical characteristics on the physical and mechanical properties of Bambusa blumeana. Journal of Tropical Forest Science, 6(2), 159–170.

Mohmod, A. L., Ariffin, W. T. W., & Ahmad, F. (1990). Anatomical features and mechanical properties of three Malaysian Bamboos. Journal of Tropical Forest Science, 2(3), 227–234.

Nugroho, N, Kartini, & Bahtiar, E. T. (2021). Cross-species bamboo grading based on flexural properties. IOP Conference Series: Earth and Environmental Science, 891(1), 012008. https://doi.org/10.1088/1755-1315/891/1/012008

Nugroho, Naresworo, & Bahtiar, E. T. (2021). Buckling formulas for designing a column with Gigantochloa apus. Case Studies in Construction Materials, 14, e00516. https://doi.org/10.1016/j.cscm.2021.e00516

Nugroho, Naresworo, Bahtiar, E. T., & Nurmadina. (2018). Grading Development of Indonesian Bamboo Culm: Case Study on Tali Bamboo (Gigantochloa apus). In 2018 World Conference on Timber Engineering (pp. 1–6). Seoul.

Nurmadina, Nugroho, N., & Bahtiar, E. T. (2017). Structural grading of Gigantochloa apus bamboo based on its flexural properties. Construction and Building Materials, 157, 1173–1189. https://doi.org/10.1016/j.conbuildmat.2017.09.170

Sá, R. A., Sá, M. G., & Miranda, I. P. A. (2017). Bending strength and nondestructive evaluation of structural bamboo. Construction and Building Materials, 146, 38–42. https://doi.org/10.1016/j.conbuildmat.2017.04.074

Sánchez Vivas, L., Costello, K., Mobley, S., Mihelcic, J. R., & Mullins, G. (2022). Determination of safety factors for structural bamboo design applications. Architectural Engineering and Design Management, 18(1), 26–37. https://doi.org/10.1080/17452007.2020.1781589

Schulgasser, K., & Witztum, A. (1992). On the strength, stiffness and stability of tubular plant stems and leaves. Journal of Theoretical Biology, 155(4), 497–515. https://doi.org/10.1016/S0022-5193(05)80632-0

Sharma, B., Harries, K. A., & Ghavami, K. (2013). Methods of determining transverse mechanical properties of full-culm bamboo. Construction and Building Materials, 38, 627–637. https://doi.org/10.1016/j.conbuildmat.2012.07.116

Shukla, S. R., & Sharma, S. K. (2017). Evaluation of Dynamic Elastic Properties of Bambusa Bambos at Three Different Stages of Its Life Cycle by Elastosonic Technique. Journal of Tropical Forest Science, 29(4), 448–456. Retrieved from http://www.jstor.org/stable/44371424

Trujillo, D., & Jangra, S. (2016). Grading of Bamboo (INBAR Working Paper No. 79, 1st ed.). Beijing: International Network for Bamboo and Rattan.

Wegst, U. G. K. (2011). Bending efficiency through property gradients in bamboo, palm, and wood-based composites. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 744–755. https://doi.org/10.1016/j.jmbbm.2011.02.013




DOI: https://doi.org/10.20886/jphh.2022.40.3.165-188

Refbacks

  • There are currently no refbacks.


JURNAL PENELITIAN HASIL HUTAN INDEXED BY:

More...


Copyright © 2015 | Jurnal Penelitian Hasil Hutan (JPHH, Journal of Forest Products Research)

eISSN : 2442-8957        pISSN : 0216-4329

       

JPHH is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.