UTILIZATION OF CITRIC ACID AS BONDING AGENT IN SEMBILANG BAMBOO (Dendrocalamus giganteus Munro) PARTICLEBOARD PRODUCTION

Autor(s): Firda A. Syamani, Agus Z. Arifqi, Sasa S. Munawar, Sudarmanto Sudarmanto, Lilik Astari, Kurnia W. Prasetiyo, Mohamad Gopar, Ismadi Ismadi, Sukma S. Kusumah, Mohd. H. Hussin, Subyakto Subyakto, Yusuf S. Hadi, Kenji Umemura
DOI: 10.20886/ijfr.2022.9.1.99-120

Abstract

Citric acid was utilized as a bonding agent in the production of Sembilang bamboo particleboard. The limitation in using bamboo for particleboard production is that the silica content in bamboo skin can accelerate particleboard processing machines' bluntness and reduce particle adherence in particleboard manufacturing. This research aimed to investigate the influence of bamboo skin and citric acid content on the characteristics of Sembilang bamboo particleboard. Particleboards were prepared using bamboo particles (type A) and unskinned bamboo particles (type B). The citric acid solution (59%) was sprayed over the surface of bamboo particles to obtain three different levels of citric acid, i.e., 15, 20, and 25 % (based on bamboo particles’ dry weight). The Sembilang bamboo particleboards were manufactured using a hot-pressing machine at 200°C, 5 MPa for 10 min. The particleboard targeted density was 0.8 g/cm3. The type B particleboards’ internal bond (IB), modulus of rupture (MOR), water absorption (WA), and thickness swelling (TS) were superior compared to the type A particleboards. This was influenced by the lower concentration of silica in type B particleboards, which tend to allow an intimate contact area among particles and citric acid then produced better quality particleboards compared to type A particleboards. The type B particleboards met the obligation of JIS A 5908 for type 18 particleboard in terms of modulus of rupture, modulus of elasticity, and internal bond, however, only fulfilled the type 8 particleboard in terms of screw holding power. The physical properties of Sembilang bamboo particleboard were also improved when using type B bamboo particles and adhered with citric acid at a level of 25%.

Keywords

Sembilang bamboo; particleboards; citric acid; physical properties; mechanical properties; silica

Full Text:

PDF

References

Abd El-Sayed, E.S., El-Sakhawy, M., Kamel, S., El-Gendy, A., Abou-Zeid, R.E. (2019). Eco- friendly Mimosa Tannin Adhesive System for Bagasse Particleboard Fabrication. Egypt. J. Chem., 62 (5), 777-787. doi: 10.21608/EJCHEM.2018.5413.1479.

Amini, M.H.M., Hashim, R., Sulaiman, N.S. (2019). Formaldehyde-Free Wood Composite Fabricated Using Oil Palm Starch Modified with Glutardialdehyde as the Binder. International Journal of Chemical Engineering, Volume 2019, Article ID 5357890, 9 pages, doi:10.1155/2019/5357890.

Canavan, S., Richardson, D.M., Visser, V., Le Roux, J.J., Vorontsova, M.S., Wilson, J.R.U. (2017). The global distribution of bamboos: assessing correlates of introduction and invasion. AoB PLANTS, 9(1), plw078; doi:10.1093/aobpla/plw078.

Cardoso, C.R., Oliveira, T.J.P., Santana, J.A., Ataide, C.H. (2013). Physical characterization of sweet sorghum bagasse, tobacco residue, soy hull and fiber sorghum bagasse particles: density, particle size and shape distributions. Powder Technol., 245, 105–114. doi: 10.1016/j.powtec.2013.04.029.

Cui, J., Lu, X., Zhou, X., Chrusciel, L., Deng. H., Zhou, H., Zhu, S., Brosse, N. (2015). Enhancement of mechanical strength of particleboard using environmentally friendly pine (Pinus pinaster L.) tannin adhesives with cellulose nanofibers. Annals of Forest Science, 72 (1), 27-32, doi:10.1007/s13595-014-0392-2.

Elizabeth, A.W. (2000). Bamboo diversity and its future prospect in Indonesia. Proceeding of the third international wood science symposium, November 1-2, 2000, Uji, Kyoto, Japan. pp 235-240. http://lipi.go.id/publikasi/bamboo-and-its-future-prospect-in-indonesia/5107.

Faris, A.H., Ibrahim, M.N.M., Rahim, A.A. (2016). Preparation and characterization of green adhesives using modified tannin and hyperbranched poly(amine-ester). International Journal of Adhesion and Adhesives, 71, 39-47. doi: 10.1016/j.ijadhadh.2016.08.009.

Fechtal, M., Riedl B. (1993). Use of eucalyptus and Acacia mollissima skin extract- formaldehyde adhesives in particleboard manufacture. Holzforschung, 47(4), 349- 357. doi: 10.1515/hfsg.1993.47.4.349.

Hızıroglu S. (1996). Surface roughness analysis of wood composites: a stylus method. For Prod J., 46:67–72. https://agris.fao.org/agris-search/search.do?recordID=US9706632.

Ibrahim, M.N.M., Zakaria, N., Sipaut, C.S., Sulaiman, O., Hashim, R. (2011). Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydrate Polymers, 86(1), 112-119. doi: 10.1016/j.carbpol.2011.04.018.

Juliana, A.H., Paridah, M.T., Rahim, S., Nor Azowa, I., Anwar, U.M.K. (2012). Properties of particleboards made from kenaf (Hibiscus cannabinus L.) as function of particle geometry. Materials and Design, 34, 406-411. doi: 10.1016/j.matdes.2011.08.019.

Kasim J., Tamat N.S.M., Yusoff N.F., Rahman W.M.N.W.A., Ahmad N., Yunus N.Y.M. (2018) Impact of Alkaline Treatment on Mechanical Properties and Thickness Swelling of Exterior Particleboard Made from Kelempayan (Neolamarckia cadamba) Wood. In: Yacob N., Mohd Noor N., Mohd Yunus N., Lob Yussof R., Zakaria S. (eds) Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016). Springer, Singapore. https://doi.org/10.1007/978-981-13-0074-5_76.

Kelly, M.W. (1977). Critical Literature Review of Relationships Between Processing Parameters and Physical Properties of Particleboard. General Technical Report. Fpl-10, May 1977. https://www.fs.usda.gov/treesearch/pubs/9820.

Khalil, H.S.A., Alwani, M.S., Omar, A.K.M. (2006). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220-232. https://bioresources.cnr.ncsu.edu/resources/chemical-composition-anatomy-lignin-distribution-and-cell-wall-structure-of-malaysian-plant-waste-fibers/

Kim, S. (2009). Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresource Technology, 100(2), 744-748. doi: 10.1016/j.biortech.2008.06.062

Kusumah, S.S., Arinana, Hadi, Y.S., Guswenrivo, I., Yoshimura, T., Umemura, K., Tanaka, S., Kanayama, K. (2017). Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard III: Influence of adding sucrose on the properties of particleboards. BioResources, 12(4), 7498-7514. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_12_4_7498_Kusumah_Sweet_Sorghum_Bagasse_Citric_Acid

Kusumah, S.S., Umemura, K., Guswenrivo, I., Yoshimura, T., Kanayama, K. (2017). Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: influences of pressing temperature and time on particleboard properties Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: influences of pressing temperature and time on particleboard properties. J Wood Sci, doi:10.1007/s10086-016-1605-0.

Kusumah, S.S., Umemura, K., Yoshioka, K., Miyafuji, H., Kanayama, K. (2016). Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard I: Effects of pre-drying treatment and citric acid content on the board properties. Industrial Crops and Products, 84(9), 34–42. doi: 10.1016/j.indcrop.2016.01.042

Li, X. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. LSU Master's Theses. 866. 2004. https://digitalcommons.lsu.edu/gradschool_theses/866

Liao, R., Xu, J., Umemura, K. (2016). Low density sugarcane bagasse particleboard bonded with citric acid and sucrose: effect of board density and additive content. Bioresources, 11 (1), 2174-2185. https://bioresources.cnr.ncsu.edu/resources/low-density-sugarcane-bagasse-particleboard-bonded-with-citric-acid-and-sucrose-effect-of-board-density-and-additive-content/

Liese, W. (1998). The anatomy of Bamboo Culms. Technical report. International Network for Bamboo and Rattan, Beijing-Eindhoven-New Dehli, 208 p. https://www.inbar.int/inbar_publication/the-anatomy-of-bamboo-culms/

Liza Bazzetto, J.T., Bortoletto Junior, G., Brito, F.M.S. (2019). Effect of Particle Size on Bamboo Particle Board Properties. Floresta e Ambiente, 26(2), e20170125. doi: 10.1590/2179-8087.012517.

Lu, J.Z., Wu, Q. (2006). Surface characterization of chemically modified wood: dynamic wettability. Wood and Fiber Science, 38(3), 497-511. https://wfs.swst.org/index.php/wfs/article/view/1488.

Lybeer, B. (2006). Age-related anatomical aspects of some temperate and tropical bamboo culms (Poaceae: Bambusoideae). Dissertation submitted to obtain the degree of Doctor of Science: Biology Academic year 2005-2006 at Ghent University - Faculty of Science. https://www.semanticscholar.org/paper/Age-related-anatomical-aspects-of-some-temperate-Lybeer/90b5d7ddfb34a736ca6b1661459f674893255199

Maloney, T.M. (1993). Modern Particleboard & Dry-process Fiberboard Manufacturing. Miller Freeman.

Marra, A.A. (1992). Technology of Wood Bonding: Principles in Practise. New York (US): Van Nostrand Reinhold.

Munawar, S.S., Umemura, K., Kawai, S. (2009). Development of molded products made from bio-based renewable resources. The 27th Annual Conference of Wood Technological Association in Japan. Kumamoto-Japan, October 8-10, 2009.

Nurdiah, E.A. (2016). The Potential of Bamboo as Building Material in Organic Shaped Buildings. Procedia - Social and Behavioral Sciences, 216, 30 – 38. doi: 10.1016/j.sbspro.2015.12.004.

Omoniyi, T.E., Olorunnisola, A.O. (2014). Experimental characterisation of bagassebiomass material for energy production. International Journal of Engineering and Technology, 4(10), 582–589. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.4703&rep=rep1&type=pdf.

Park, S.H., Wistara, N.J., Febrianto, F., Lee, M. (2020). Evaluation of Sembilang Bamboo (Dendrocalamus giganteus) Charcoal for Potential Utilization. BioResources, 15(1), 6-19. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_15_1_6_Park_Sembilang_Bamboo_Charcoal.

Pizzi, A. (2006). Recent developments in eco-efficient bio-based adhesives for wood bonding: Opportunities and issues. Journal of Adhesion Science and Technology, 20(8), 829- 846. doi: 10.1163/156856106777638635.

Prasetiyo, K.W., Gopar, M., Kurniawati, L., Syamani, F.A., Kusumah, S.S. (2018). Particleboards from Corn Husks and Citric Acid. Proceeding of International Symposium on Bioeconomics of Natural Resources Utilization, pp. 453-458. http://lipi.go.id/publikasi/particleboards-from-corn-husks-and-citric-acid/25686.

Prasetiyo, K.W., Octaviana, L., Astari, L., Syamani, F.A., Subyakto, Achmadi. S.S. (2018). Physical-Mechanical Properties and Bonding Mechanism of Corn Stalks Particleboard with Citric Acid Adhesive. J. Ilmu Teknol. Kayu Tropis, 16 (2), 131-140. doi: 10.51850/jitkt.v16i2.448.

Salleh, K.M., Hashim, R., Sulaiman, O., Hiziroglu, S., Nadhari, W.N.A.W., Karim, N.A., Jumhuri, N., Ang, L.Z.P. (2015). Evaluation of properties of starch-based adhesives and particleboard manufactured from them, Journal of Adhesion Science and Technology, 29(4), 319-336. doi:10.1080/01694243.2014.987362.

Shi, S.Q., Gardner, D.J. (2001). Dynamic adhesive wettability of wood. Wood and Fiber Science. 33(1), 58-68. https://wfs.swst.org/index.php/wfs/article/download/538/538.

Syamani, F.A., Kusumah, S.S., Astari, L., Prasetiyo, K.W., Wibowo, E.S., Subyakto. (2018). Effect of pre-drying time and citric acid content on Imperata cylindrica particleboards properties, IOP Conf. Ser.: Earth Environ. Sci. 209 011003. doi: 10.1088/1755- 1315/209/1/012034

Syamani, F.A., Munawar, S.S. (2012). Eco-friendly boards from vetiver root and citric acid. Presented at 12th Conference of Science Council of Asia and International Symposium. Held in Bogor, Indonesia, July 10-12, 2012.

Syamani, F.A., Munawar, S.S. (2013). Eco-friendly Board from Oil Palm Frond and Citric Acid. Wood Research Journal, 4(2), 72-75. doi: 10.51850/wrj.2013.4.2.72-75.

Syamani, F.A., Sudarmanto, Subyakto, Subiyanto, B. (2020). High quality sugarcane bagasse- citric acid particleboards. IOP Conf. Ser.: Earth Environ. Sci. 415 012006. doi: 10.1088/1755-1315/415/1/012006.

Tang, L., Zhang, R., Zhou, X., Pan, M., Chen, M., Yang, X., Zhou, P., Chen, Z. (2012). Dynamic adhesive wettability of poplar veneer with cold oxygen plasma treatment. BioResources., 7(3), 3327-3339. https://bioresources.cnr.ncsu.edu/resources/dynamic-adhesive-wettability-of-poplar-veneer-with-cold-oxygen-plasma-treatment/

Umemura K., Ueda, T., Kawai, S. (2012). Characterization of wood-based molding bonded with citric acid. J Wood Sci., 58, 38–45. doi:10.1007/s10086-011-1214-x.

Umemura, K., Sugihara, O., Kawai, S. (2015). Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard II: effects of board density and pressing temperature. J Wood Sci, 61, 40–44. doi:10.1007/s10086-014-1437-8.

Umemura, K., Ueda, T., Munawar, S.S., Kawai, S. (2011). Application of Citric Acid as Natural Adhesive for Wood. Journal of Applied Polymer Science, 123, 1991–1996. doi:10.1002/app.34708.

Van Acker, J., De Vos, J., De Geyter, S., Stevens, M. (2000). Bamboo as raw material for wood processing in Europe. In Forests and society: the role of research. XXI IUFRO World.

Widyorini, R. Nugraha, P.A., Rahman, M.Z.A., Prayitno, T.A. (2016). Bonding ability of new adhesive composed of citric acid-sucrose for particleboards. BioResources, 11(2), 4526-4535. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_2_4526_Widyorini_Bonding_Ability_Adhesive_Citric_Acid.

Widyorini, R., Umemura, K., Isnan, R., Putra, D.R., Awaludin, A., Prayitno, T.A. (2016). Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. Eur. J. Wood Prod., 74(1), 57–65. doi: 10.1007/s00107-015-0967-0

Widyorini, R., Yudha, A.P., Adifandi, Y., Umemura, K., Kawai, S. (2013). Characteristic of Bamboo Particleboard Bonded with Citric Acid. Wood Research Journal, 4 (1), 31- 35. doi: 10.51850/wrj.2013.4.1.31-35

Yang, C.Q., Xu, Y., Wang, D. (1996). FT-IR spectroscopy study of the polycarboxylic acids used for paper wet strength improvement. Ind Eng Chem Res, 35, 4037–4042. doi: 10.1021/ie960207u

Younesi-Kordkheili, H. (2017). Improving physical and mechanical properties of new lignin- urea-glyoxal resin by nanoclay. European Journal of Wood and Wood Products, 75, 885-891. doi: 10.1007/s00107-016-1153-8.

Yuan, Y., Lee, T.R. (2013). Contact angle and wetting properties chapter 1. In: Bracco G, Holst B. 2013. Surface Science Techniques. Berlin (DE): Springer Science and Business Media. http://www.podiahk.com/index_htm_files/ContactAngle_Tilt_Test.pdf.

Yuan, Z. (2017). Understanding Hemicellulose and Silica Removal from Bamboo. A thesis for the degree of Doctor of Philosophy in The Faculty of Graduate and Postdoctoral Studies (Chemical and Biological Engineering), The University of British Columbia, Vancouver. https://open.library.ubc.ca/media/download/pdf/24/1.0343481/4.

Zagar, E., Grdadolnik, J. (2003). An infrared line spectroscopic study of H-bond network in hyperbranched polyester polyol. J Mol Struct, 658(3), 143-152. doi: 10.1016/S0022-2860(03)00286-2.

Refbacks

  • There are currently no refbacks.