PERBEDAAN SIMPANAN KARBON ORGANIK PADA HUTAN TANAMAN Acacia Mangium Wild DAN HUTAN SEKUNDER MUDA

Harris Herman Siringoringo

Sari


Penelitian ini dilakukan untuk mempelajari simpanan karbon organik tanah pada dua tipe lahan, yaitu antara plot pada hutan tanaman A. mangium Willd (M-P) dan plot pada vegetasi hutan sekunder muda (M-SF) setelah empat tahun pada tipe tanah Acrisols di Resort Polisi Hutan (RPH) Maribaya, Kabupaten Bogor. Hasil penelitian menunjukkan bahwa kandungan karbon organik tanah (SOC) pada kedalaman 0-30 cm secara umum lebih tinggi pada plot M-P (2,30-4,79%) daripada SOC pada plot M-SF (1,79-3,81%). Sementara, kerapatan massa (BD) tanah pada kedalaman 0-30 cm, lebih rendah pada plot M-P (0,62-0,85g/cm3) daripada BD tanah pada plot M-SF (0,76-0,89 g/cm3). Pendekatan melalui massa tanah setara, perubahan simpanan SOC kumulatif pada kedalaman 0-30 cm adalah lebih tinggi pada plot M-P (8,8 ton/ha atau setara dengan sekuestrasi CO atmosfer ke dalam tanah sebesar 8,4 ton/ha/tahun) daripada pada plot MSF (2,2 ton C/ha atau setara dengan sekuestrasi CO2 atmosfer ke dalam tanah sebesar 1,5 ton/ha/tahun). Implikasinya adalah bahwa perambahan hutan sekunder muda ke hutan tanaman A. mangium Willd pada tipe tanah Acrisols di Maribaya dapat berfungsi sebagai penyerap karbon ke dalam tanah.

Kata Kunci


Perubahan tataguna lahan; hutan tanaman; simpanan karbon; penyerap karbon; pendekatan massa tanah setara

Teks Lengkap:

pdf

Referensi


Badan Planologi Kehutanan (Baplan). (2005). Buku rekalkulasi penutupan lahan Indonesia tahun 2005. Jakarta: Badan Planologi Kehutanan.

Balesdent, J., Chenu, C., & Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 53, 215-230.

Batjes, N.H. (1999). Management option for reducing CO2 concentration atmosphere by increasing carbon sequestration in soil. (Report 10200-031). Dutch National Research Programme on Global Air Pollution and Climate Change and Technical Paper 30. Wagenigen: International Soil Reference and Information Centre.

Berg, B. (2000). Litter decomposition and organic matter turnover in orthern forest soils. For. Ecol. Manag. 133, 13-22.

Berg, B., Johansson, M.B., Nilsson, A., Gundersen, P., & Norell, L. (2009). Sequestration of carbon in the humus layer of Swedish forests direct measurements. Can. J. For. Res. 39, 962-975.

Beuch, S., Boelcke, B., & Belau, L. (2000). Effects of the organic residues of miscanthus x giganteus on soil organic matter level of arable soils. J. Agron. Crop Sci. 183, 111119.

Bird, S. B., Herrick, J. E., & Wander, M. M. (2001). Exploiting heterogeneity of soil organic matter in rangelands: Benefits for carbon sequestration. In Follet, R. F., Kimble, J. M., and Lal, R. (Ed.), The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. (pp. 121-138). Boca Raton, FL: CRC Press.

Carvalho, J.L.N, Cerri, C.E. P., Feigl, B.J., Piccolo, M. de C., Godinho, V.de P., Herpin, U., & Cerri, C.C. (2009). Conversion of cerrado into agricultural land in the southwestern Amazon:Carbon stocks and soil fertility. Sci. Agric. (Piracicaba, Braz.) 66(2), 233-241.

Chen, C.R., Xu, Z.H., & Mathers, N.J. (2004). Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci. Soc. Am. J.68, 282-291.

Corsi, S., Friedrich, T., Kassam, A., Pisante, M., & Sà, JdM. (2012). Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a reviewliterature. Integrated Crop Manag.16, 2012.

Dalal, R. C., & Mayer, R.J. (1986). Longterm trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. II. Total organic carbon and its rate of loss from the soil profile. Aust. J. Soil Res. 24, 281-292.

Dalal, R.C., Harms, B.P, Krull, E., & Wang, W.J. (2005). Total organic matter and its labile pools following mulga (Acacia aneura) clearing for pasture development and cropping 1. Total and labile carbon. Aust. J. Soil Res. 43, 13-20.

Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., &Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems.Science 263, 185-190.

Don, A., Scholtons, T., & Schulze, E.D. (2009). Conversion of cropland into grassland: Implications for soil organic carbon stocks in two soils with different texture. J. Plant Nutr. Soil Sci. 172, 53-62.

Don, A., Schumacher, J., & Freibauer, A. (2010). Impact of tropical landuse change on soil organic carbon stocks a meta analysis. Global Change iol. 17(4), 1658-1670.

Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten, T., & Schulze, E.D. (2007). Spatial and vertical variation of soil carbon at two grassland sites-implications for measuring soil carbon stocks. Geoderma 141, 272-282.

Ellert, B.H. & Bettanym, J.R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil. Sci. 75, 529-538.

Ellert, B.H., Janzen, H.H., & Entz, T. (2002). Assessment of a method to measure temporal change in soil carbon storage. Soil Sci. Soc. Am. J. 66, 1687-1695.

FAO. (2001). Global forest resources assessment 2000. (Main report). Forestry Paper 140, 479.

FAO. (2006). Global forest resources assessment 2005. Progress towards sustainable forest management. Forestry Paper 147, 350.

FAO/ISRIC/ISSS. (1998). World reference base for soil resources. World Soil Resources Report 84.

Gifford, R.M. & Roderick, M.L. (2003). Soil carbon stocks and bulk density: spatial or cumulative mass coordinates as a basis of expression? Global Change Biol. 9, 1507-1514.

Golchin, A., Oades, J.M., Skjemstad, J.O., & Clarke, P. (1994). Soil structure and carbon cycling. Aust. J. Soil Res. 32, 1043-1068.

Guo, L.B. & Gifford, R.M. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8, 345-360.

Hook, P.B., & Burke, I.C. (2000). Biogeochemistry in a shortgrass landscape: control by topography, soil texture and microclimate. Ecology 81, 2686-2703.

Howard, P.J.A., Howard, D.M.L., & Lowe, L.E. (1998). Effects of tree species and soil physico chemical conditions on the nature of soil organic matter. Soil Biol. Biochem. 30, 285-297.

IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. In Eggleston, S. Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (Ed.), Agriculture, Forestry and Other Land Use (Vol. 4). Japan: IGES.

IPCC. (2007). IPCC special report on land use, land use change and forestry. Cambridge: Cambridge University Press.

Jackson, R. B., & Caldwell, M.M. (1993). Geostatistical patterns of soil heterogeneity around individual perennial plants. J. of Ecol. 81, 683-692.

Jobbagy, E.G. & Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10(2), 423-436.

Juo, A.S.R., & Manu, A. (1996). Chemical dynamics in slash and burn agriculture. Agric. Ecos. & Env. 58, 49-60.

Kanerva, S. & Smolander, A. (2007). Microbial activities in forest floor layers under silver birch, norway spruce and scots pine. Soil Biol. Biochem. 39, 1459-1467.

Knowles, T.A. & Singh, B. (2003). Carbon storage in cotton soils of northern New South Wales. Australian J. of Soil Res. 41, 889-903.

Kraus, T.E.C., Dahlgren, R.A., & Zasoski, R.J. (2003). Tannins in nutrient dynamics of forest ecosystems a review. Plant Soil 256, 41-66.

Laganiere J, Angers, D.A., & Paré, D. (2010). Carbon accumulation in agricultural soils after afforestation: a meta analysis. Global Change Biol. 16, 439-453.

Lal, R. (2005). Soil carbon sequestration in natural and managed tropical forest ecosystems. Jour. of Sustainable For. 21(1), 1-30.

Lorenz, K. & Lal, R. (2005). The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advance in Agronomy 88, 35-66.

McKenzie, N.J., Grundy, M.J., Webster, R., & Ringrose Voase, A.J. (2008). Guidlines for surveying soil and land resources. CSIRO Publishing, 576.

McKenzie, R. (2010). Soil carbon sequestration under pasture in Australian dairy regions. Dairy Australia: Project MCK 13538.

Mendham, D.S., O’Connell, A.M., & Grove, T.S. (2003). Change in soil carbon after land clearing or afforestation in highly weathered lateritic and sandy soils of southwestern Australia. Agric., Ecosystems & Env. 95(1),143-156.

Ngo, K.M., Turner, B.L, Muller-Landau, H.C., Davies, S.J., Larjavaara, M.Hassan, N.F.B.N., & Lumd, S. (2013). Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecol. and Manage. 296,81-89.

Nguyen, C. (2003). Rhizodeposition of organic C by plants: Mechanismsand controls. Agronomie 23, 375-396.

Ohta, S. (2001). Outlined procedure of soil survey and soil sampling (Draft). Carbon Fixing Forest Management Project. Indonesia: Japan International Cooperation Agency and Forestry Research and Development Agency.

Paul, K., Ipolglase, P.J., Nyakuengama, J.G., & Khanna, P.K. (2002). Change in soil carbon following afforestation. Forest Ecol. and Manage.,168, 241-257.

Pearson, T., Walker, S., & Brown, S. (2005). Sourcebook for land use, land use change and forestry projects. Bio Carbon Fund and WinrockInternational.

Perez Cruzado, C., Mansilla-Salinero, P., Rodriguez Soalleiro, R., & Merino, A. (2011). Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant Soil. Regular Article (pp. 21).

Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land use change in the temperate zone carbon response functions as a model approach. Global Change Biol. 17(7), 2415-2427.

Pregitzer, K.S. (2003). Woody plants, carbon allocation and fine roots.New Phytologist 158(3), 421-424.

Prescott, C.E. (2010). Litter decomposition: what controls it and how canwe alter it to sequester more carbon in forest soils? Biogeochem. 101, 1-17.

Pribyl, D.W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma 156, 75-83.

Quideau, S.A., Anderson, M.A. Graham, R.C. Chadwick, O.A., & Trumbore, S.E. (2000). Soil organic matter processes: characterization by 13C NMR and 14C measurements. For. Ecol. Manage. 138, 19-27.

Rasse, D.P., Rumpel, C., & Dignac, M.F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269, 341-356.

Resh, S.C., Binkley, D., & Parrotta, J.A. (2002). Greater soil carbon sequestration under nitrogen fixing trees compared with Eucalyptus species. Ecosystems 5, 217-231.

Romkens, P., Hassink, J., & Van der Plicht, J. (1998). Soil organic C-14 dynamics: Effects of pasture installation on arable land. Radiocarbon 40, 1023-1031.

Sall, J., Creighton, L., & Lehman, A. (2005). JMP start statistics. A guide to statistics and data analysis using JMP and JMP in Software. (3 ed., pp. 560). Thomson Learning Academic Resource Center.

Sanderman, J., Farquharson, R., & Baldock, J. (2010). Soil carbon sequestration potential : A review for Australian agriculture. CSIRO Landand Water, 76.

Schenk, H.J. (2008). The shallowest possible water extraction profile: Anull model for global root distributions. Vadose Zone J. 7, 1119-1124.

Schlesinger, W.H. (1977). Carbon balance in terrestrial detritus. Annu.Rev. Ecol. Syst. 8, 51-81.

Schlesinger, W.H. (1997). Biogeochemistry An analysis of global change.(2 nd ed.). San Diego: Academic Press. Schoning, I. & Kogel Knabner, I. (2006). Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol. Biochem. 38, 2411-2424.

Siringoringo, H.H., Siregar, C.A., & Hatori, H. (2003). Analysis of soil carbon accumulation of Acacia mangium plantation in Maribaya, West Java. Buletin Penelitian Hutan 634, 59-78.

Soil Survey Staff. (1999). Keys to soil taxonomy. Washington DC: USDANatural Resources Conservation Service.

Spain, A.V., Isbell, R.F., & robert, M.E. (1983). Soil organic matter. In Allen, D.E., Pringle, M.J., Page, K.L., & Dalal, R.C. (Ed.), A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. The Rangeland Journal 2010(32), 227-246.

Sundermeier, A., Reeder, R., & Lal, R. (2005). Soil carbon sequestration -Fundamentals. (Extension FactSheet). The Ohio State University: Food, Agricultural, and Biological Engeenering.

Taylor, J.P., Wilson, M.S. Mills, M.S., & Burns, R.G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. & Biochem. 34, 387-401.

The Word Bank. (2012). Carbon sequestration in agricultural soils. (Agriculture and Rural Development, Report Number 67395-GLB). Washington: The World Bank.

Toriyama, J., T. Kato, T., Siregar, C.A., Siringoringo, H.H., Ohta, S., & Kiyono, Y. (2011). Comparison of depth-and mass-based approachesfor estimating changes in forest soil carbon stocks: A case study in young plantations and secondary forests in West Java, Indonesia. ForestEcol. & Manage. 262, 1659-1667.

Van Cleve, K. & Powers, R.F. (1995). Soil carbon, soil formation, and ecosystem development. In McFee, W.W. & Kelly, J.M. (Ed.), Carbon Forms and Functions in Forest Soils. USA: Soil Science Society ofAmerica Inc.

Van den Bygaart, A.J. (2006). Monitoring soil organic carbon stock changes in agricultural landscapes: Issues and a proposed approach. Can. J. Soil Sci. 86, 451-463.

Van der Werf, G.R., Morton, D.C., & DeFries, R.S. (2009). CO2 emissions from forest loss. Nature Geosci. 2, 737-738.

Vesterdal, L., Schmidt, I.K., Callesen, I., Nilsson, L.O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil undersix common European tree species. For. Ecol. Manage. 255, 35-48.

Waid, J. S. (1974). Decomposition of roots. In Dickinson, C.H. & Pugh,G.J.F. (Ed.), Biology of Plant Litter Decomposition (pp. 175-211). London:Academic Press.

Wallander, H., Oransson, H.G., & Rosengren, U. (2004). Production, standing biomass and natural abundance of 15N and 13C in ctomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139, 89-97.

West, T.O., Marland, G., King, A.W., & Post, W.M. (2004). Carbon management response curves: Estimates of temporal soil carbon dynamics. Env. Manage. 33(4), 507-518.

Wuest, S.B. (2009). Correction of bulk density and sampling method biases using soil mass per unit area. SSSAJ 73(1).




DOI: https://doi.org/10.20886/jphka.2014.11.1.13-39

##submission.copyrightStatement##

##submission.license.cc.by-nc4.footer##

JURNAL PENELITIAN HUTAN DAN KONSERVASI ALAM INDEXED BY:

More...

Copyright of Jurnal Penelitian Hutan dan Konservasi Alam (JPHKA)

eISSN : 2540-9689, pISSN : 0216-0439 

JPHKA is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.