Harris Herman Siringoringo


Pembangunan hutan tanaman dapat meningkatkan potensi sekuestrasi karbon organik tanah. Simpanan C organik tanah kumulatif pada hutan tanaman Acacia mangium Willd pada tipe tanah Acrisols dikuantifikasi dua kali, yaitu: pada awal setelah penyiapan lahan dan empat tahun setelah penanaman  dengan menggunakan pendekatan massa tanah setara. Penelitian dilaksanakandi Resort Polisi Hutan (RPH) Maribaya,  Kabupaten Bogor. Hasil penelitian menunjukkan bahwa  kerapatan massa (BD) tanah pada kedalaman 0-10 cm menurun sangat nyata (p < 0,001)  setelah empat tahun penanaman, namun tidak berbeda nyata pada kedalaman tanah yang lebih bawah ( 10-100 cm). Kandungan karbon organik tanah meningkat sangat nyata (p< 0,001), namun tidak berbeda  pada kedalaman yang lebih bawah (30-100 cm). Simpanan karbon organik tanah kumulatif pada kedalaman 0-30 cm meningkat  8,8 ton C/ha dari 66,1 ton C/ha ke 74,9 ton C/ha, dengan potensi laju sekuestrasi karbon ke dalam tanah sebesar 2,30 ton C/ha/tahun (2,3% per tahun). Simpanan karbon organik tanah kumulatif pada kedalaman 0-100 cm tidak berbeda secara statistik di antara kedua seri waktu dalam periode yang sama. Hasil penelitian menyimpulkan bahwa pembangunan hutan tanaman A. mangium pada tipe tanah Acrisols di Maribaya dapat meningkatkan laju sekuestrasi karbon organik tanah.

Kata Kunci

Sekuestrasi karbon; simpanan karbon; massa tanah setara; kandungan karbon; kerapatan massa (BD); Acrisols

Teks Lengkap:



Anderson, D.W. (1979). Processes of humus formation and transformation in the soils of the Canadian Great Plains. J. Soil Sci. 30, 77-84.

Andrade, H.J., Brook, R., & Ibrahim, M. (2008). Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308, 11-22.

Anikwe, M.A.N. (2010). Carbon storage in soils of Southeastern Nigeria under different management practices. Anikwe Carbon Balance and Manag. 5, 5.

Balesdent, J., Chenu, C., & Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protecttion and tillage. Soil Tillage Res. 53, 215-230.

Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Sci. 47(2), 151-163.

Berg, B. (2000). Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manag. 133, 13-22.

Berg, B., Johansson, M.B., Nilsson, A., Gundersen, P., & Norell, L. (2009). Sequestration of carbon in the humus layer of Swedish forests direct measurements. Can. J. For. Res. 39, 962-975.

Beuch, S., Boelcke, B., & Belau, L. (2000). Effects of the organic residues of Miscanthus x giganteus on soil organic matter level of arable soils. J. Agron. Crop Sci. 183, 111-119.

Carvalho, J.L.N., Cerri, C.E.P., Feigl, B.J., Piccolo, M. de C., Godinho, V.de P., Herpin, U., & Cerri, C.C. (2009). Conversion of cerrado into agricultural land in the south western Amazon: Carbon stocks and soil fertility. Sci. Agric. (Piracicaba, Braz.), 66(2), 233-241.

Conteh, A., Lefroy, R.D.B., & Blair, G.J. (1997). Dynamics of organic matter in soil as determined by variations in 13C/12C isotopic ratios and fractionation by ease of oxidation. Aust. J. Soil Res. 35,881-890.

Don, A., Schumacher, J., & Freibauer, A. (2010). Impact of tropical landuse change on soil organic carbon stocks a meta analysis. Global Change Biology 17(4), 1658- 1670.

Don, A., Schumacher, J., Scherer Lorenzen, M., Scholten, T., & Schulze, E.D. (2007). Spatial and vertical variation of soil carbon at two grassland sites implications for measureing soil carbon stocks. Geoderma. 141, 272-282.

Ellert, B.H. & Bettanym, J.R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil. Sci. 75, 529-538.

Ellert, B.H., Janzen, H.H., & Entz, T. (2002). Assessment of a method to measure temporal change in soil carbon storage, Soil Sci. Soc. Am. J., 66, 1687-1695.

Eswaran, H., van den Berg, E., & Reich, P. (1993). Organic carbon in soils of the world. Soil Sci. Society of America Jour. 57, 192-194.

Eusterhues, K., Rumpel, C., & Kogel Knabner, I. (2005). Stabilization of soil organic matter isolated by oxi dative degradation. Organic Geo chemistry, 36, 1567-1575.

FAO. (2001). Global forest resources assessment 2000 (Main Report). Forestry Paper 140, pp. 479. Rome: FAO.

FAO. (2002). Tropical forest plantation areas 1995. Dalam H. Krisnawati, M. Kallio, M. Kanninen. 2011. Acacia mangium Willd.

Ekologi, silvikultur dan produktivitas. Bogor: CIFOR.FAO/ISRIC/ISSS.(1998). World reference base for soil. World Soil Resources Report No. 84. Rome: FAO.

Feller, C. & Beare, M.H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma 79, 69-116.

Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277-281.

Gifford, R.M. & Roderick, M.L. (2003). Soil carbon stocks and bulk density: spatial or cumulative mass coordinates as a basis of expression? Global Change Biol. 9, 1507-1514.

Golchin, A., Oades, J.M., Skjemstad, J.O., & Clarke, P. (1994). Soil structure and carbon cycling. Aust. J. Soil Res. 32: 1043-1068.

Huang, Z., Davis, M.R., Condron, L.M., & Clinton, P.W. (2011). Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biol. Biochem. 43, 1341-1349.

IPCC. (2006). Agriculture, forestry and other land use. In S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.) Guidelines for National Greenhouse Gas Inventories (Vol. 4). IGES, Japan.

Jobbágy, E.G. & Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423-436.

Jones, D.L., Nguyen, C., & Finlay, R.D. (2009). Carbon flow in the rhi zosphere: carbon trading at the soil root interface. Plant Soil 321, 5-33.

Kanerva, S. & Smolander, A. (2007). Microbial activities in forest floor layers under silver birch, Norway spruce and Scots pine. Soil Biol. Biochem. 39, 1459-1467.

Kasel, S., Singh, S., Sanders, G.J., & Bennett, L.T. (2011). Species specific effects of native trees on soil organic carbon in biodiverse plantings across north central Victoria, Australia. Geoderma 161, 95-106.

Kraus, T.E.C., Dahlgren, R.A., & Za-soski, R.J. (2003). Tannins in nutrient dynamics of forest ecosys-tems A review. Plant Soil 256, 41-66.

Krull, E., Baldock, J., & Skjemstad, J. (2001). Soil texture effects on decomposition and soil carbon storage. NEE Workshop Proceedings, 18-20 April 2001 CRC for Greenhouse Accounting, CSIRO Land and Water Australia.

Lal, R. (2005). Soil carbon sequestration in natural and managed tropical forest ecosystems. Jour. of Sustainable For. (Food Products Press, an imprint of The Haworth Press, Inc.) 21(1), 1-30.

Lal, R.,J., Kimble, M., & Follett, R.F. (2001). Methodological challenges toward balancing soil C pools and fluxes. In R. Lal, R. F. Follett, & B. A. Stewart (Ed.): Assessment me-thods for soil carbon (pp. 659-668). CRC, Boca Raton, Fla.

Laungani, R. & Knops, J.M.H. (2009). The impact of cooccurring tree and grassland species on carbon sequestration and potential biofuel production. GCB Bioenergy 1, 392-403.

Lemma, B., Kleja, D.B, Nilsson, I., & Olsson, M. (2006). Soil carbon sequestration under different exotic tree species in the southwestern highlands of Ethiopia. Geoderma 136, 886-898.

Lorenz, K. & Lal, R. (2005). The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advance in Agronomy 88, 35-66.

Lorenz, K., Lal, R., & Shipitalo, M.J. (2011). Stabilized soil organic carbon pools in sub soils under forest are potential sinks for atmospheric CO2. For. Sci. 57(1), 19-25.

Markewich, H.W. & Buell, G.R. (2001). A guide to potential soil carbon sequestration. Land use management for mitigation of greenhouse gas emissions. U.S. Geological Survey Open File Report 01-374.

McKenzie, N.J., Grundy, M.J., Webster, R., & Ringrose Voase, A.J. (2008). Guidelines for surveying soil and land resources (pp. 576). Canberra: CSIRO Publishing.

Mendham, D.S., O’Connell, A.M., & Grove, T.S. (2003). Change in soil carbon after land clearing or afforestation in highly weathered lateritic and sandy soils of south western Australia. Agriculture, Eco systems & Environment 95(1), 143-156.

Nguyen, C. (2003). Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23, 375-396.

Nierop, G.J.K., Jansen, B., Hageman, J.A., & Verstraten, J.M. (2006). The complementary of extractable and ester bound lipids in a soil profile under pine. Plant Soil 286, 269- 285.

Nilsson, S. & Schopfhauser, W. (1995). The carbon sequestration potential of a global afforestation program. Clim. Change 30, 267-293.

Nsabimana, D., Klemedtson, L., Kaplin, B.A., & Wallin, G. (2008). Soil car-bon and nutrient accumulation under forest plantations in southern Rwanda. African Jour. of Environmental Sci. and Techn. 2 (6), 142-149.

Ohta, S. (2001). Outlined procedure of soil survey and soil sampling (Draft). Carbon Fixing Forest Management Project. Japan International Cooperation Agency and Forestry Research and Development Agency. Indonesia: Ministry of Forestry. (Tidak dipublikasikan).

Paul, E. A. (1984). Dynamics of soil organic matter. Plant Soil 76, 275-285.

Paul, E.A. & van Veen, J.A. (1978). The use of tracers to determine the dy namic nature of organic matter. International Congress of Soil Science, Transactions of the 11th Symposia Papers 3: 61-102, Edmonton.

Paul, K.I., Polglase, P.J., Nyakuengama, J.G., & Khanna, P.K. (2002). Change in soil carbon following afforestation. For. Ecol. Manag. 168, 241-257.

Perez-Cruzado, C., Mansilla Salinero, P., Rodriguez Soalleiro, R., & Merino, A. (2011). Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant Soil. Regular Article. Springer Science+Business Media, B.V., pp. 21.

Post, W.M., Emanuel, W.R., Zinke, P.J., & Stangenberger, A.G. (1982). Soil carbon pools and world life zones. Nature 298, 156-159.

Post, W.M. & Kwon, K.C. (2000). Soil carbon sequestration and land use change: processes and potential. Global Change Biol. 6, 317-327.

Pregitzer, K.S. (2003). Woody plants, carbon allocation and fine roots. New Phytologist 158(3), 421-424.

Prescott, C.E. (2010). Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 1-17.

Pribyl, D.W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma 156, 75-83.

Rasse, D.P., Rumpel, C., & Dignac, M.F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269, 341-356.

Resh, S.C., Binkley, D., & Parrotta, J.A. (2002). Greater soil carbon sequestration under nitrogen fixing trees compared with Eucalyptus species. Ecosystems 5, 217-231.

Rimbawanto, A. (2002). Plantation and tree improvement trends in Indonesia. In K. Barry (Ed): Heartrots in Plantation Hardwoods in Indonesia and Australia. Canberra: Australian Centre for International Agricultural Research.

Sall, J., Creighton, L., & Lehman, A. (2005). JMP start statistics. A guide to statistics and data analysis using JMP and JMP in Software (3th ed.). Thomson Learning Academic Resource Center.

Sanderman, J., Farquharson, R. & Baldock, J. (2010). Soil carbon seques tration potential: A review for Australian Agriculture (pp.76). CSIRO Land and Water.

Schenk, H.J. (2008). The shallowest possible water extraction profile: A null model for global root distributions. Vadose Zone J. 7, 1119-1124.

Schimel, D.S. (1995). Terrestrial ecosystems and the carbon cycle. Glob. Change Biol. 1, 77-91.

Schoning, I., & Kogel Knabner, I. (2006). Chemical composition of young and old carbon pools throughout cambisol and luvisol profiles under forests. Soil Biol. Biochem. 38, 2411-2424.

Schrumpf, M., Schulze, E.D., Kaiser, K., & Schumacher, J. (2011). How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosci. Discuss. 8, 723-769.

Siringoringo, H.H, Siregar, C.A., & Hato-ri, H. (2003). Analysis of soil carbon accumulation of Acacia mangium plantation in Maribaya, West Java. Bul. Pen. Hut. 634, 59-78.

Six, J., Feller, C., Denef, K., Sa, J.C.D., Ogle, S.M., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils effects of notillage. Agronomie 22, 755- 775.

Soil Survey Staff. (1999). Keys to soil taxonomy. Washington DC: USDA Natural Resources Conservation Service.

Swift, R.S. (2001). Sequestration of carbon by soil. Soil Science, 166(11), 858-871.

Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23, 11.

Taylor, J.P., Wilson, M.S., Mills, M.S., & Burns, R.G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. & Biochemistry 34, 387-401.

Tisdall , J.M. & Oades, J.M. (1982). Organic matter and waterstable aggregates in soils. J. Soil Sci. 33, 141-163.

Toriyama, J., Kato, T., Siregar, C.A.,Siringoringo, H.H.,Ohta,S.,& Kiyono, Y. (2011). Comparison of depth and mass based approaches for estimating changes in forest soil carbon stocks: A case study in young plantations and secondary forests in West Java, Indonesia. Forest Ecol. and Manag. 262, 1659-1667.

Trumbore, S.E. (1993). Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles 7, 275-290.

Van den Bygaart, A.J. (2006). Monitoring soil organic carbon stockc hanges in agricultural landscapes: Issues and a proposed approach. Can. J. Soil Sci. 86, 451-463.

Vesterdal, L., Schmidt, I.K., Callesen, I., Nilsson, L.O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 255, 35-48.

Wallander, H., Oransson, H.G., & Rosengren, U. (2004). Production, standing biomass and natural abundance of 15N and 13C in ectomy corrhizal mycelia collected at different soil depths in two forest types. Oecologia 139, 89-97.

Wuest, S.B. (2009). Correction of bulk density and sampling method biases using soil mass per unit area. SSSAJ 73(1).

Xiang, S.R., Doyle, A., Holden, P.A., & Schimel, J.P. (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology & Biochemistry 40, 2281-2289.

DOI: https://doi.org/10.20886/jphka.2013.10.2.193-213





Copyright of Jurnal Penelitian Hutan dan Konservasi Alam (JPHKA)

eISSN : 2540-9689, pISSN : 0216-0439 

JPHKA is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.