Impact of Litter Quality and Earthworm Populations on Seruk Spring Forest’s Soil Characteristic

Abban Putri Fiqa, Siti Sofiah


Seruk spring, located in Batu, East Java, is a spring with four different Land Use Systems (LUS) in its surrounding area, comprising a mixed, a pine, an eucalypt, and a bamboo forests. Over time, there have been changes in land use around the area of Seruk Spring. This results in a decrease in the environmental quality, and even in the spring’s water discharge. As spring serves as an important part of people living in the immediate vicinity, this research aimed to determine the differences in litter quality, earthworm populations, and soil porosity at each LUS. Litter was measured in each area and analyzed in the laboratory to determine its biomass and quality. Earthworm populations and biomass were measured with the iron box method, while the soil porosity and organic matter were based on secondary data from the previous research. The correlation among all the parameters was analyzed with Principal Components Analysis (PCA) using PAST 3 software. The results showed that the bamboo forest had the most suitable land-use system around spring, based on the highest litter thickness and its quality in the area. The different qualities of each LUS provided diverse advantages for the spring ecosystem. The presence of the bamboo forest around the spring area should be conserved, to maintain the quality of the ecosystem and the sustainability of the spring area itself.

Kata Kunci

recharge area, conservation, earthworm density, soil attributes

Teks Lengkap:

PDF (English)


Astuti, I. S., Sahoo, K., Milewski, A., & Mishra, D. R. (2019). Impact of Land Use Land Cover (LULC) change on surface runoff in an increasingly urbanized tropical watershed.. Water Resources Management, 33(12), 4087–4103.

Batunacun, Nendel, C., Hu, Y., & Lakes, T. (2018). Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—A case study from Xilingol, China. Land Degradation and Development, 29(6), 1595–1606.

Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T., & Roger-Estrade, J. (2015). Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 35(2), 553–567.

Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussard, L., Butt, K. R., … Brun, J. . (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64, 161–182.

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., … Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 1–13.

Chae, H. M., Choi, S. H., Lee, S. H., Cha, S., Yang, K. C., & Shim, J. K. (2019). Effect of litter quality on needle decomposition for four pine species in Korea. Forests, 10(5), 1–15.

Chotimah, T., Wasis, B., & Rachmat, H. (2020). Populasi makrofauna, mesofauna, dan tubuh buah fungi ektomikoriza pada tegakan Shorea leprosula di hutan penelitian Gunung Dahu Bogor. Jurnal Penelitian Hutan Dan Konservasi Alam, 17(1), 79–98.

Demessie, A., Singh, B. R., Lal, R., & Strand, L. T. (2012). Leaf litter fall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 62(5), 467–476.

Dewi, W. S., & Senge, M. (2015). Earthworm diversity and ecosystem services under threat. Reviews in Agricultural Science, 3(0), 25–35.

Fiqa, A. P., & Sofiah, S. (2011). Pendugaan laju dekomposisi dan produksi biomassa serasah pada beberapa lokasi di Kebun Raya Purwodadi. Berk. Penel. Hayati Edisi Khusus, 5F, 17–20.

Fiqa, A. P., Yulistyarini, T., & Arisoesilaningsih, E. (2018). Ecosystem services assessment after 13 years restoration program in the Janitri Water Spring Conservation Area at Batu City. Jurnal Pembangunan Dan Alam Lestari, 9(1), 1–8.

Ge, X., Zeng, L., Xiao, W., Huang, Z., Geng, X., & Tan, B. (2013). Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review. Acta Ecologica Sinica, 33(2), 102–108.

Hairiah, K., Ekadinata, A., Sari, R. R., & Rahayu, S. (2011). Pengukuran cadangan karbon: dari tingkat lahan ke bentang alam. Petunjuk praktis. World Agroforestry Centre, ICRAF SEA Regional Office, University of Brawijaya (2nd ed., Vol. 2). Malang: World Agroforestry Centre,ICRAF SEA Regional Office, University of Brawijaya. Retrieved from

Haynes, R. J., Dominy, C. S., & Graham, M. H. (2003). Effect of agricultural land use on soil organic matter status and the composition of earthworm communities in Kwazulu-Natal, South Africa. Agriculture, Ecosystems and Environment, 95(2–3), 453–464.

Joko, T., Anggoro, S., Sunoko, H. R., & Rachmawati, S. (2017). Pesticides usage in the soil quality degradation potential in Wanasari Subdistrict, Brebes, Indonesia. Applied and Environmental Soil Science, 2017, 7 pages.

Kanianska, R., Jad’ud’ová, J., Makovníková, J., & Kizeková, M. (2016). Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability (Switzerland), 8(9), 906–919.

Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment, 2(4), 236–249.

Lavelle, P., & Spain, A. V. (2001). Soil Ecology. The Netherlands: Kluwer Academic Publisher.

Li, X., Niu, J., & Xie, B. (2014). The effect of leaf litter cover on surface runoff and soil erosion in Northern China. PLoS ONE, 9(9).

Liu, G., Cornwell, W. K., Cao, K., Hu, Y., Van Logtestijn, R. S. P., Yang, S., … Cornelissen, J. H. C. (2015). Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. Journal of Ecology, 103(5), 1214–1223.

Lu, S. Y., Liu, C. P., Hwang, L. S., & Wang, C. H. (2007). Hydrological characteristics of a Makino bamboo woodland in Central Taiwan. Taiwan Journal of Forest Science, 22(1), 81–93.

Maftu’ah, E., & Susanti, M. A. (2009). Komunitas cacing tanah padabeberapa penggunaan lahan gambut di Kalimantan Tengah. Berita Biologi, 9(4), 371–378.

Mishra, N., Khare, D., Gupta, K. K., & Shukla, R. (2014). Impact of land use change on ecosystem services: A review. Advance in Water Resource and Protection, 2(2), 28–41.

Nugroho, A. W., Widuri, S. S., & Sayektiningsih, T. (2018). Earthworm population at the post coal mining field in East Kalimantan, Indonesia. Indonesian Journal of Forestry Research, 5(2), 81–93.

Nurhidayati, Arisoesilaningsih, E., Suprayogo, D., & Hairiah, K. (2012). Earthworm population density in sugarcane cropping system applied with various quality of organic matter. Journal of Tropical Life Science, 2(3), 103–109.

Ott, D., Rall, B. C., & Brose, U. (2012). Climate change effects on macrofaunal litter decomposition: The interplay of temperature, body masses and stoichiometry. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1605), 3025–3032.

Pan, J., Liu, Y., Yuan, X., Xie, J., Niu, J., Fang, H., … Zhang, L. (2020). Root litter mixing with that of japanese cedar altered CO2 emissions from moso bamboo forest soil. Forests, 11(3), 1–10.

Paoletti, M. (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems & Environment, 74, 137-155.

Polasky, S., Nelson, E., Pennington, D., & Johnson, K. A. (2011). The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environmental and Resource Economics, 48(2), 219–242.

Ponge, J. F. (2013). Plant-soil feedbacks mediated by humus forms: A review. Soil Biology and Biochemistry, 57, 1048–1060.

Pudjiharta, A. (2010). pengaruh perubahan penggunaan lahan hutan terhadap hasil air di Baturaden. Jurnal Penelitian Hutan Dan Konservasi Alam, 7(2), 119–126.

Rahman, M. M., & Motiur, R. M. (2012). Quantitative Chemical Defense Traits, Litter Decomposition and Forest Ecosystem Functioning. In J. A. Blanco (Ed.), Forest Ecosystems - More than Just Trees. In Tech.

Rindyastuti, R., & Darmayanti, A. S. (2010). Komposisi Kimia Dan Estimasi Proses Dekomposisi Seresah 3 Spesies Familia Fabaceae Di Kebun Raya Purwodadi. Seminar Nasional Biologi, 993–998.

Singh, J., Schädler, M., Demetrio, W., Brown, G. G., & Eisenhauer, N. (2019). Climate change effects on earthworms-a review Europe PMC Funders Group. Soil Org, 91(3), 114–138.

Siringoringo, H. H. (2014). Perbedaan simpanan karbon organik pada hutan tanaman Acacia Mangium Wild dan hutan sekunder muda. Jurnal Penelitian Hutan Dan Konservasi Alam, 11(1), 13–39.

Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7–31

Song, X., Zhou, G., Gu, H., & Qi, L. (2015). Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant and Soil, 395(1–2), 391–400.

Talbot, J. M., & Treseder, K. K. (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93(2), 345–354.

Tresch, S., Frey, D., Le Bayon, R. C., Zanetta, A., Rasche, F., Fliessbach, A., & Moretti, M. (2019). Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Science of the Total Environment, 658, 1614–1629. /j.scitotenv.2018.12.235

Uluocha, O. B., Udeagha, A. U., & Umeojiakor, A. O. (2016). Effects of land use on nutrient content in soil and leaf litter under bamboo trees (Bambusa vulgaris Shrad Ex. J.C. Wendl) in South Eastern. Journal of Agriculture and Rural Development, 19(1), 2511–2516.

Van Soest, P. J., & Wine, R. H. (1968). Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal of AOAC INTERNATIONAL, 51(4), 780–785.

Yagüe, M. R., Domingo-Olivé, F., Bosch-Serra, À. D., Poch, R. M., & Boixadera, J. (2016). Dairy cattle manure effects on soil quality: porosity, earthworms, aggregates and soil organic carbon fractions. Land Degradation and Development, 27(7), 1753–1762.

Yulistyarini, T. (2011). Keragaman vegetasi dan pengaruhnya terhadap laju infiltrasi di daerah resapan mata air Seruk, Desa Pesanggrahan -Batu. Berk. Panel . Hayati Edisi Khusus, 5, 39–43.

Yulistyarini, T., & Sofiah, S. (2011). Valuing quality of vegetation in recharge area of Seruk Spring, Pesanggrahan Valley, Batu City, East Java. Biodiversitas, Journal of Biological Diversity, 12(4), 229–234.

Yulistyarini, T., Solikin, Sofiah, S., & Laksono, R. A. (2009). Karakterisasi beberapa mata air di kota Batu dan vegetasi di sekitarnya. Berkala Penelitian Hayati, 3(January), 87–93.

Yusnaini, S., Niswati, A., Arif, M. A. S., & Nonaka, M. (2008). The changes of earthworm population and chemical properties of tropical soils under different land use systems. Journal of Tropical Soils, 13(2), 131–137.

Zhang, B., Wang, H., Yao, S., & Bi, L. (2013). Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana. Soil Biology and Biochemistry, 57, 556–567.

Zhang, C., Xie, G., Fan, S., & Zhen, L. (2010). Variation in vegetation structure and soil properties, and the relation between understory plants and environmental variables under different phyllostachys pubescens forests in Southeastern China. Environmental Management, 45(4), 779–792.

Zhang, L., Zou, J., & Siemann, E. (2017). Interactive effects of elevated CO2 and nitrogen deposition accelerate litter decomposition cycles of

invasive tree (Triadica sebifera). Forest Ecology and Management, 385, 189–197.





Copyright of Jurnal Penelitian Hutan dan Konservasi Alam (JPHKA)

eISSN : 2540-9689, pISSN : 0216-0439 

JPHKA is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.