PENGARUH ZAT EKSTRAKTIF KAYU GAMAL (Gliricidia sepium Jacq.) TERHADAP NILAI KALOR

Rahmi Mauladdini, Wasrin Syafii, Deded Sarip Nawawi

Abstract


Pengembangan jenis kayu gamal (Gliricidia sepium Jacq.) bertujuan untuk memenuhi kebutuhan kayu energi di pedesaan. Penelitian mengenai zat ekstraktif pada tanaman gamal sudah banyak dilakukan, namun informasi mengenai pengaruh zat ekstraktif terhadap nilai kalor masih sangat sedikit. Pengaruh zat ekstraktif terhadap nilai kalor dapat diketahui dengan cara menganalisis senyawa ekstraktif yang terdapat pada kayu tersebut. Penelitian ini bertujuan untuk mengetahui senyawa ekstraktif yang berpengaruh terhadap perubahan nilai kalor kayu. Serbuk kulit dan kayu gamal diekstraksi dengan cara maserasi bertingkat menggunakan pelarut yang memiliki kepolaran berbeda. Serbuk yang telah bebas ekstraktif kemudian diukur nilai kalornya. Untuk memastikan pengaruh zat ekstraktif terhadap nilai kalor, ekstrak kulit dan kayu gamal tersebut ditambahkan ke serbuk batang sawit, lalu diukur kenaikan nilai kalornya. Hasil penelitian ini menunjukkan bahwa zat ekstraktif pada kulit dan kayu gamal berpengaruh terhadap perubahan nilai kalor, dan, penghilangan zat ekstraktif dengan menggunakan pelarut yang berbeda menyebabkan penurunan nilai kalor yang berbeda. Penurunan nilai kalor paling tinggi (4,03%) dihasilkan dari zat ekstraktif kulit gamal yang terlarut pelarut non-polar (n-heksana). Penambahan ekstraktif kayu gamal ke serbuk batang sawit juga menyebabkan peningkatan nilai kalor. Analisis fitokimia dan LC-MS/MS terhadap ekstraktif terlarut n-heksana dari kulit kayu gamal mendeteksi adanya kelompok senyawa terpena, amida, alkaloid, flavonoid, coumarin, dan benzopyrans. Berdasarkan hasil penelitian ini, senyawa terlarut n-heksana diduga paling berpengaruh terhadap nilai kalor.


Keywords


Gliricidia sepium Jacq.; maserasi; nilai kalor; polaritas berbeda; senyawa terlarut n-heksana

References


Abdullah, F. O., Hamahameen, B., & Dastan, D. (2021). Chemical constituents of the volatile and nonvolatile, cytotoxic and free radical scavenging activities of medicinal plant: Ranunculus millefoliatus and Acanthus dioscoridis. Polish Journal of Environmental Studies, 30(3), 1981–1989. doi: 10.15244/pjoes/ 128265.

Adejoro, F., & Lajide, L. (2019). Termiticidal and repellency activity of three selected tropical woods against subterranean termite worker (Macrotermes bellicosus). World Applied Sciences Journal, 37(1), 34–40. doi: 10.5829/idosi.wasj.2019.34.40

Ahmad, N. R. (2014). Konversi Biomassa untuk Energi Alternatif di Indonesia: Tinjauan Sumber Daya, Teknologi, Manajemen, dan Kebijakan (H. Abimanyu & S. Hendrana (eds.)). Jakarta: LIPI Press.

Álvarez-Álvarez, P., Pizarro, C., Barrio-Anta, M., Cámara-Obregón, A., María Bueno, J. L., Álvarez, A., Gutiérrez, I., & Burslem, D. F. R. P. (2018). Evaluation of tree species for biomass energy production in Northwest Spain. Forests, 9(4), 1–15. doi: 10.3390/f9040160.

[ASTM] American Society for Testing and Material. (2004). Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter (ASTM E 711-87).

[ASTM] American Society for Testing and Material. (2013). Test Method for Ash In Wood (ASTM D-1102).

[ASTM] American Society for Testing and Material. (2013). Test Method for Fixed Carbon In Wood (ASTM D-3175).

[ASTM] American Society for Testing and Material. (2019). Standard Test Method for Moisture Analysis of Particulate Wood Fuels (ASTM E-872).

[ASTM] American Society for Testing and Material. (2019). Test Method for Volatile Metter in the Analysis of Particular Wood Fuels (ASTM E-872).

Anshariah, Imran, A. M., Widodo, S., & Irvan, U. R. (2020). Correlation of fixed carbon content and calorific value of South Sulawesi Coal, Indonesia. IOP Conference Series: Earth and Environmental Science, 473(1), 1–7. doi: 10.1088/1755-1315/473/1/012106.

Arisandi, R., Ashitani, T., Takahashi, K., Marsoem, S. N., & Lukmandaru, G. (2020). Lipophilic extractives of the wood and bark from Eucalyptus pellita F. Muell grown in Merauke, Indonesia. Journal of Wood Chemistry and Technology, 40(2), 146–154. doi: 10.1080/027738 13.2019.1697295.

Atapattu, A. A. A. J., Pushpakumara, D. K. N. G., Rupasinghe, W. M. D., Senarathne, S. H. S., & Raveendra, S. A. S. T. (2017). Potential of Gliricidia sepium as a fuelwood species for sustainable energy generation in Sri Lanka. Agricultural Research Journal, 54(1), 34. doi: 10.5958/2395-146x.2017.00006.0.

Borchard, N., Bulusu, M., Hartwig, A. M., Ulrich, M., Lee, S. M., & Baral, H. (2018). Screening potential bioenergy production of tree species in degraded and marginal land in the tropics. Forests, 9(10), 1–8. doi: 10.3390/f9100594.

Cavalaglio, G., Cotana, F., Nicolini, A., Coccia, V., Petrozzi, A., Formica, A., & Bertini, A. (2020). Characterization of various biomass feedstock suitable for small-scale energy plants as preliminary activity of biocheaper project. Sustainability, 12(6678), 1–10. doi: 10.3390/su 12166678.

Chormey, D. S., & Bakirdere, S. (2018). Principles and recent advancements in microextraction techniques. In Comprehensive Analytical Chemistry (Vol. 81, pp. 257–294). doi: 10.1016/bs.coac. 2018.03.011.

Chung, M. S., Lee, G. W., Lee, S. S., Chung, B. Y., & Lee, S. (2020). Comparative analysis of volatile terpenoids composition in Rosemary leaves in response to ionizing radiation. Journal of Essential Oil-Bearing Plants, 48–54. doi: 10.1080/09720 60X.2020.1782775.

Da Costa Cordeiro, B. M. P., De Lima Santos, N. D., Ferreira, M. R. A., De Araújo, L. C. C., Junior, A. R. C., Da Conceição Santos, A. D., De Oliveira, A. P., Da Silva, A. G., Da Silva Falcão, E. P., Dos Santos Correia, M. T., Da Silva Almeida, J. R. G., Da Silva, L. C. N., Soares, L. A. L., Napoleão, T. H., Da Silva, M. V., & Paiva, P. M. G. (2018). Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. BMC Complementary and Alternative Medicine, 18(1), 1–10. doi: 10.1186/s12906-018-2350-2.

Dehghanizadeh, M., Cheng, F., Jarvis, J. M., Holguin, F. O., & Brewer, C. E. (2020). Characterization of resin extracted from guayule (Parthenium argentatum): A dataset including GC–MS and FT-ICR MS. Data in Brief, 31, 1–10. doi: 10.1016/j.dib.2020.105989.

Demko, J., & Machava, J. (2022). Tree resin, a macroergic source of energy, a possible tool to lower the rise in atmospheric CO2 levels. Sustainability, 14, 1–18. doi: 10.3390/su1406 3506.

Domingos, I., Ayata, U., Ferreira, J., Cruz-Lopes, L., Sen, A., Sahin, S., & Esteves, B. (2020). Calorific power improvement of wood by heat treatment and its relation to chemical composition. Energies, 13(20), 1–10. doi: 10.3390/en13205322

Gbolade, A., Adedokun, O., Bello, A., & Bello, Z. (2019). Cytotoxic and growth inhibitory activities of Gliricidia sepium (Jacq.) kunth ex walp. (Fabaceae) and Hymenocardia acida Tul. (Phyllanthaceae) stem bark. Nigerian Journal of Pharmaceutical Sciences, 18(2), 1–10.

Henne, R. A., Brand, M. A., Schveitzer, B., & Schein, V. A. S. (2019). Thermal behavior of forest biomass wastes produced during combustion in a boiler system. Revista Arvore, 43(1), 1–9. doi: 10.1590/1806-90882019000100008.

Hoogmartens, I., Vanderzande, D., Martens, H., & Gelan, J. (1996). Effects of carbonisation temperature on charcoal from some tropical trees. Bioresource Technology, 57, 91–94. doi: 10.1016/0379-6779(92)90376-T.

Islam, M. N., Ratul, S. B., Sharmin, A., Rahman, K. S., Ashaduzzaman, M., & Uddin, G. M. N. (2019). Comparison of calorific values and ash content for different woody biomass components of six mangrove species of Bangladesh Sundarbans. Journal of the Indian Academy of Wood Science, 16(2), 110–117. doi: 10.1007/s13196-019-00246-9.

Jannah, N., Saleh, C., & Pratiwi, D. R. (2020). Skrining fitokimia ekstrak etanol dan fraksi-fraksi daun alamanda (Allamanda Catharica L.). Prosiding Seminar Nasional Kimia Berwawasan Lingkungan 2020, 81–85.

Jasmine, T., Sundaram, R. M., Poojitha, M., Swarnalatha, G., Padmaja, J., Kumar, M. R., & Reddy, K. B. (2017). Medicinal propersties of Gliricidia sepium: A review. International Journal of Current Pharmaceutical & Clinical Research, 7(1), 35–39.

Kumar, R., Chandrashekar, N., Prasad, N. R. R., & Tailor, R. (2020). Effect of extractive content on fuelwood characteristics of certain woody and non-woody biomass. Current Science, 118(6), 966–969. doi: 10.18520/cs/v118/i6/966-969.

Mauladdini, R., Nawawi, D. S., & Syafii, W. (2022). Pengaruh zat ekstraktif kayu terhadap nilai kalor. Jurnal Ilmu Kehutanan, 16(1), 64–73. doi: 10.22146/jik.v16i1.2720.

Mulyana, B., Soeprijadi, D., Rohman, R., Purwanto, R. H., & Reorita, R. (2021). A simulation study on forest inventory of gliricidia plantation using a virtual tree map. AIP Conference Proceedings, 2353(30017), 1–7. doi: 10.1063/5.0052673.

Narendra, B. H., Siregar, C. A., & Salim, A. G. (2020). The potency of wood based electricity production from critical land in Indonesia. IOP Conference Series: Materials Science and Engineering, 935(1), 1–9. https://doi.org/10.1088/1757-899X/935/1/012044.

Nukmal, N., Pratami, G. D., Rosa, E., Sari, A., & Kanedi, M. (2019). Insecticidal effect of leaf extract of gamal (Gliricidia sepium) from different cultivars on papaya mealybugs (Paracoccus marginatus, Hemiptera: Pseudococcidae). Journal of Agriculture and Veterinary Science, 12(1), 4–8. https://doi.org/10.9790/2380-1201030408.

Oduola, T., Umar, R. A., Isah, B. A., Bello, M., Aiyelabegan, F., Isa, L. O., & Oduola, G. B. (2018). Use of Gliricidia sepium aqueous leaf extract as an antisickling agent: Oxidative stress biomarkers in wistar rats exposed to the extract. International Journal of Medical and Health Research, 4(August), 79–83.

Oyelere, A. T., & Oluwadare, A. O. (2019). Studies on physical, thermal and chemical properties of wood Gliricidia sepium for potential bioenergy production. International Journal of Biomass and Renewables, 8(2), 28–38.

Ponce-Rodríguez, H. D., Herráez-Hernández, R., Verdú-Andrés, J., & Campíns-Falcó, P. (2019). Quantitative analysis of terpenic compounds in microsamples of resins by capillary liquid chromatography. Molecules, 24(22), 1–12. doi.org/10.3390/molecules24224068

Rajvanshi, A. (1986). Biomass Gasification (Y. Goswami (ed.); Nimbkar Ag). CRC Press.

Rossi, T., Moura, L. F. De, Torquato, P. R., & Brito, J. O. (2013). Effect of extractive removal on the calorific value of Brazilian woods residues. J. Chem. Chem. Eng., 7, 340–343.

Routa, J., Anttila, P., & Asikainen, A. (2017). Wood extractives of finnish pine, spruce and birch – availability and optimal sources of compounds: A literature review. Natural Resources Institute Finland, 73, 1–55. http://urn.fi/URN:ISBN:978-952-326-495-3

Ruiz-Aquino, F., Ruiz-Ángel, S., Feria-Reyes, R., Santiago-García, W., Suárez-Mota, M. E., & Rutiaga-Quiñones, J. G. (2019). Wood chemical composition of five tree species from Oaxaca, Mexico. BioResources, 14(4), 9826–9839. https://doi.org/10.15376/biores.14.4.9826-9839

Seethalashmi, A. (2016). Gliricidia sepium bioenergy resource for power generation. Research Journal of Chemical and Environmental Sciences, 4(3), 32–37.

Sengupta, D., Samburova, V., Bhattarai, C., Kirillova, E., Mazzoleni, L., Iaukea-Lum, M., Watts, A., Moosmüller, H., & Khlystov, A. (2018). Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion. Atmospheric Chemistry and Physics, 18(15), 10849–10867. https://doi.org/10.5194/acp-18-10849-2018

Simorangkir, M., Nainggolan, B., & Silaban, S. (2019). Secondary metabolites phytochemical analysis of n-hexane, ethyl acetate and ethanol extracts of sarang banua (Clerodendrum fragrans Vent Willd) leaves. AISTSSE Conference Proceedings, 1–9. https://doi.org/10.4108/eai.18-10-2018.2287344

Stolarski, M. J., Krzyzaniak, M., Załuski, D., & Niksa, D. (2018). Evaluation of biomass quality of selected woody species depending on the soil enrichment practice. International Agrophysics, 32(1), 111–121. https://doi.org/10.1515/intag-2016-0097

Tamilvanan, A. (2013). Preparation of biomass briquettes using various agro- residues and waste papers. Journal of Biofuels, 4(2), 47–55. https://doi.org/10.5958/j.0976-4763.4.2.006

Uba, G., Dauda, H., Aujara, K. M., & Ali, U. (2020). Solvent extraction and its effects on the phytochemical yield and antioxidant capacity of Commiphora africana (Burseraceae). Bioremediation Science and Technolgy Research, 8(2), 8–11.

Umar, D. F., Hudaya, G. K., & Sulistyohadi, F. (2017). Study on combustion characteristics of coal-biomass for co-firing system as a feedstock of coal gasification process. Indonesian Mining Journal, 20(2), 115–130. doi: 10.30556/imj. vol20.no2.2017.223.

Welfle, D. A., Chingaira, S., & Kassenov, A. (2020). Decarbonising Kenya’s domestic & industry sectors through bioenergy: An assessment of biomass resource potential & GHG performances. Biomass and Bioenergy, 142, 105757. doi: 10.1016/j.biombioe.2020.105757.

Yilmaz, S., Cuhadaroglu, D., & Toroglu, I. (2019). Correlation between non. IOP Conference Series: Earth and Environmental Science, 362(1). doi: 10.1088/1755-1315/362/1/012094.




DOI: https://doi.org/10.20886/jphh.2022.40.2.125–134

Refbacks

  • There are currently no refbacks.


JURNAL PENELITIAN HASIL HUTAN INDEXED BY:

More...


Copyright © 2015 | Jurnal Penelitian Hasil Hutan (JPHH, Journal of Forest Products Research)

eISSN : 2442-8957        pISSN : 0216-4329

       

JPHH is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.