BIOMASSA SEBAGAI MATERIAL ELEKTRODA SUPERKAPASITOR

Nur Adi Saputra, Deded Sarip Nawawi, Akhiruddin Maddu, Gustan Pari, Wasrin Syafii

Abstract


Piranti penyimpanan dan distribusi listrik akan menjadi sangat penting di masa depan untuk mengintegrasikan energi terbarukan ke dalam jaringan listrik. Teknologi superkapasitor dianggap sebagai alternatif yang paling menjanjikan untuk baterai Li-ion, yang memiliki bahan Lithium terbatas.. Namun, sifat kerapatan energi yang masih rendah menjadi kelemahan superkapasitor, walaupun memiliki kepadatan daya yang tinggi. Elektroda superkapasitor berbasis karbon aktif memiliki potensi ideal untuk dikembangkan. Atribut inheren karbon aktif, sifat pori dan gugus fungsi, bertanggung jawab dalam peningkatan kinerja superkapasitor. Tantangan utama para peneliti adalah distribusi ukuran pori, mikro (<2nm), meso (2 – 50 nm) dan makro (>50 nm), yang beragam pada karbon aktif. Pori mikro berdampak terhadap peningkatan nilai  kapasitansi spesifik yang akan mendorong peningkatan kepadatan energi. Pori meso berdampak terhadap aksesbilitas permukaan elektroda secara keseluruhan oleh ion elektrolit. Penelitian-penelitian ke depan akan lebih memperhatikan teknik karbonisasi dan aktivasi karbon aktif untuk meningkatkan kualitas permukaan karbon aktif.


Keywords


karbon aktif, ukuran pori, superkapasitor, penyimpan energi, material terbarukan

References


Alhinai, M., Azad, A. K., Bakar, M. S. A., & Phusunti, N. (2018). Characterisation and thermochemical conversion of rice husk for biochar production. International Journal of Renewable Energy Research, 8(3), 1648–1656.

Amarasekara, A. S., & Ebede, C. C. (2009). Zinc chloride mediated degradation of cellulose at 200 °C and identification of the products. Bioresource Technology, 100(21), 5301–5304. https://doi.org/10.1016/j.biortech.2008.12.066

Amin, Y., Syafii, W., Wistara, N. J., & Prasetya, B. (2014). Peningkatan Rendemen Gula Pereduksi dari Kayu Jabon dengan Perlakuan Air Kapur ( Ca ( OH ) 2 ). Ilmu Teknologi Kayu Tropis, 12(2), 196–206.

Antal, M. J., Mok, W. S. L., & Richards, G. N. (1990). Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydrate Research, 199(1), 91–109. https://doi.org/10.1016/0008-6215(90)84096-D

Barbieri, O., Hahn, M., Herzog, A., & Kötz, R. (2005). Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 43(6), 1303–1310. https://doi.org/10.1016/j.carbon.2005.01.001

Bobleter, O. (1994). Hydrothermal degradation of polymers derived from plants. Progress in Polymer Science, 19(5), 797–841. https://doi.org/10.1016/0079-6700(94)90033-7

Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Björnbom, E., Minkova, V., & Goranova, M. (2006). Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Processing Technology, 87(10), 899–905. https://doi.org/10.1016/j.fuproc.2006.06.005

Cagnon, B., Py, X., Guillot, A., Stoeckli, F., & Chambat, G. (2009). Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology, 100(1), 292–298. https://doi.org/10.1016/j.biortech.2008.06.009

Chmiola, J., Yushin, G., Dash, R., & Gogotsi, Y. (2006). Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources, 158(1), 765–772. https://doi.org/10.1016/j.jpowsour.2005.09.008

Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., & Taberna, P. L. (2006). Anomalous increase in carbon at pore sizes less than 1 nanometer. Science, 313(5794), 1760–1763. https://doi.org/10.1126/science.1132195

Cuerda-Correa, E. M., Díaz-Díez, M. A., Macías-García, A., & Gañán-Gómez, J. (2006). Preparation of activated carbons previously treated with sulfuric acid. Applied Surface Science, 252(17), 6042–6045. https://doi.org/10.1016/j.apsusc.2005.11.013

Danish, M., Hashim, R., Ibrahim, M. N. M., & Sulaiman, O. (2013). Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood. Journal of Analytical and Applied Pyrolysis, 104, 418–425. https://doi.org/10.1016/j.jaap.2013.06.003

Danish, Mohammed, Hashim, R., Ibrahim, M. N. M., Rafatullah, M., Ahmad, T., & Sulaiman, O. (2011). Characterization of Acacia mangium wood based activated carbons prepared in the presence of basic activating agents. BioResources, 6(3), 3019–3033. https://doi.org/10.15376/biores.6.3.3019-3033

Darmawan, S. (2014). Karbon nanoporous dari biomasa hutan melalui proses karbonisasi bertingkat: pirolisis, hidrotermal dan aktivasi.

Daud, M., Makassar, U. M., Syafii, W., & Syamsu, K. (2012). Produktivitas Bioetanol dari Kayu Sengon ( Paraserianthes falcataria ) dengan Perlakuan Enzimatis. Seminar Nasional Masyarakat Peneliti Kayu Indonesia XV, (12 November), 1–15.

Daud, M., Syafii, W., & Syamsu, K. (2012). Bioethanol Production from Several Tropical Wood Species using Simultaneous Saccharification and Fermentation Processes. Wood Research Journal, 3(2), 106–116.

Demir-Cakan, R., Baccile, N., Antonietti, M., & Titirici, M. M. (2009). Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chemistry of Materials, 21(3), 484–490. https://doi.org/10.1021/cm802141h

El-Sayed, Y., & Bandosz, T. J. (2004). Adsorption of valeric acid from aqueous solution onto activated carbons: Role of surface basic sites. Journal of Colloid and Interface Science, 273(1), 64–72. https://doi.org/10.1016/j.jcis.2003.10.006

Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., & Órfão, J. J. M. (1999). Modification of the surface chemistry of activated carbons. Carbon, 37(9), 1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9

Frackowiak, E. (2007). Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 9(15), 1774–1785. https://doi.org/10.1039/b618139m

Ghosh, D., Giri, S., Mandal, M., & Das, C. K. (2014). High performance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite. RSC Advances, 4(50), 26094–26101. https://doi.org/10.1039/c4ra02653e

Girisuta, B., Janssen, L. P. B. M., & Heeres, H. J. (2006). Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chemical Engineering Research and Design, 84(5 A), 339–349. https://doi.org/10.1205/cherd05038

Green, R., & Staffell, I. (2016). Electricity in Europe: Exiting fossil fuels? Oxford Review of Economic Policy, 32(2), 282–303. https://doi.org/10.1093/oxrep/grw003

Gryglewicz, G., Machnikowski, J., Lorenc-Grabowska, E., Lota, G., & Frackowiak, E. (2005). Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta, 50(5), 1197–1206. https://doi.org/10.1016/j.electacta.2004.07.045

Halper, M. S., & Ellenbogen, J. C. (2006). Supercapacitors : A Brief Overview.

Hatcher, P. G., & Clifford, D. J. (1997). The organic geochemistry of coal: From plant materials to coal. Organic Geochemistry, 27(5–6), 251–257. https://doi.org/10.1016/S0146-6380(97)00051-X

Heidari, A., Younesi, H., Rashidi, A., & Ghoreyshi, A. A. (2014). Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 579–588. https://doi.org/10.1016/j.jtice.2013.06.007

Huang, J., Sumpter, B. G., & Meunier, V. (2008a). A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry - A European Journal, 14(22), 6614–6626. https://doi.org/10.1002/chem.200800639

Huang, J., Sumpter, B. G., & Meunier, V. (2008b). Theoretical model for nanoporous carbon supercapacitors. Angewandte Chemie - International Edition, 47(3), 520–524. https://doi.org/10.1002/anie.200703864

IEA. (2018). Global Energy & CO2 Statuts Report. In International energy Agency. Retrieved from www.iea.org/t&c/

Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production-A review. Renewable and Sustainable Energy Reviews, 11(9), 1966–2005. https://doi.org/10.1016/j.rser.2006.03.013

Jiang, H., Ma, H., Jin, Y., Wang, L., Gao, F., & Lu, Q. (2016). Hybrid α-Fe2O3@Ni(OH) 2 nanosheet composite for high-rate-performance supercapacitor electrode. Scientific Reports, 6(July), 1–7. https://doi.org/10.1038/srep31751

Jibril, B., Houache, O., Al-Maamari, R., & Al-Rashidi, B. (2008). Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical and Applied Pyrolysis, 83(2), 151–156. https://doi.org/10.1016/j.jaap.2008.07.003

Lakshmi, V., Ranjusha, R., Vineeth, S., Nair, S. V., & Balakrishnan, A. (2014). Supercapacitors based on microporous β-Ni(OH)2 nanorods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457(1), 462–468. https://doi.org/10.1016/j.colsurfa.2014.06.016

Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., … Emmerich, K. H. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71–106. https://doi.org/10.4155/bfs.10.81

Macedo, J. S., Otubo, L., Ferreira, O. P., Gimenez, I. de F., Mazali, I. O., & Barreto, L. S. (2008). Biomorphic activated porous carbons with complex microstructures from lignocellulosic residues. Microporous and Mesoporous Materials, 107(3), 276–285. https://doi.org/10.1016/j.micromeso.2007.03.020

Maciá-Agulló, J. A., Moore, B. C., Cazorla-Amorós, D., & Linares-Solano, A. (2004). Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon, 42(7), 1367–1370. https://doi.org/10.1016/j.carbon.2004.01.013

Masarapu, C., Wang, L. P., Li, X., & Wei, B. (2012). Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure. Advanced Energy Materials, 2(5), 546–552. https://doi.org/10.1002/aenm.201100529

Meher, S. K., & Rao, G. R. (2011). Ultralayered Co3O4 for high-performance supercapacitor applications. Journal of Physical Chemistry C, 115(31), 15646–15654. https://doi.org/10.1021/jp201200e

Miller, J. M., Miller, J., & Smith, R. (2016). White Paper Ultracapacitor Assisted Electric Drives for.

Nawawi, D. S., Carolina, A., Saskia, T., Darmawan, D., Gusvina, S. L., Wistara, N. J., … Syafii, W. (2018). Karakteristik kimia biomassa untuk energi. Ilmu Teknologi Kayu Tropis, 16(1), 45–51.

Oh, G. H., & Park, C. R. (2002). Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel, 81(3), 327–336. https://doi.org/10.1016/S0016-2361(01)00171-5

Pan, H., Li, J., & Feng, Y. P. (2010). Carbon nanotubes for supercapacitor. Nanoscale Research Letters, 5(3), 654–668. https://doi.org/10.1007/s11671-009-9508-2

Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

Pikkarainen, J. (2016). Infographic: Fuel Savings of up to 10% Possible with Start-Stop Systems. Retrieved from Skeleton Technologies website: https://www.skeletontech.com/skeleton-blog/fuel-savings-of-up-to-10-possible-with-start-stop-systems

Radenahmad, N., Azad, A. T., Saghir, M., Taweekun, J., Bakar, M. S. A., Reza, M. S., & Azad, A. K. (2020). A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, 119(November), 109560. https://doi.org/10.1016/j.rser.2019.109560

Raymundo-Piñero, E., Cazorla-Amorós, D., Linares-Solano, A., Delpeux, S., Frackowiak, E., Szostak, K., & Béguin, F. (2002). High surface area carbon nanotubes prepared by chemical activation. Carbon, 40(9), 1614–1617. https://doi.org/10.1016/S0008-6223(02)00134-3

Reza, M. S., Islam, S. N., Afroze, S., Abu Bakar, M. S., Sukri, R. S., Rahman, S., & Azad, A. K. (2020). Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, 5(2), 118–133. https://doi.org/10.1007/s40974-019-00139-0

Salitra, G., Soffer, A., Eliad, L., Cohen, Y., & Aurbach, D. (2000). Carbon electrodes for double-layer capacitors: relations between ion and pore dimensions. Journal of The Electrochemical Society, 147(7), 2486. https://doi.org/10.1149/1.1393557

Sevilla, M., & Fuertes, A. B. (2009). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry - A European Journal, 15(16), 4195–4203. https://doi.org/10.1002/chem.200802097

Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Shamiri, A. (2010). A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143–151. https://doi.org/10.1016/j.jaap.2010.07.006

Shi, H. (1996). Activated carbons and double layer capacitance. Electrochimica Acta, 41(10), 1633–1639. https://doi.org/10.1016/0013-4686(95)00416-5

Suhas, Carrott, P. J. M., & Ribeiro Carrott, M. M. L. (2007). Lignin - from natural adsorbent to activated carbon: A review. Bioresource Technology, 98(12), 2301–2312. https://doi.org/10.1016/j.biortech.2006.08.008

Syafii, W., & Siregar, Z. (2006). Sifat Kimia dan Dimensi Serat Kayu Mangium ( Acacia mangium Willd .) dari Tiga Provenans. Journal Tropical Wood Science & Technology, 4(1), 28–32.

Titirici, Maria M., Thomas, A., Yu, S. H., Müller, J. O., & Antonietti, M. (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials, 19(17), 4205–4212. https://doi.org/10.1021/cm0707408

Titirici, Maria Magdalena, White, R. J., Falco, C., & Sevilla, M. (2012). Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy and Environmental Science, 5(5), 6796–6822. https://doi.org/10.1039/c2ee21166a

Tseng, R. L., Wu, F. C., & Juang, R. S. (2003). Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon, 41(3), 487–495. https://doi.org/10.1016/S0008-6223(02)00367-6

Wang, D. W., Li, F., Liu, M., Lu, G. Q., & Cheng, H. M. (2008). 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie - International Edition, 47(2), 373–376. https://doi.org/10.1002/anie.200702721

Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051

Yu, L., & Chen, G. Z. (2016). Redox electrode materials for supercapatteries. Journal of Power Sources, 326, 604–612. https://doi.org/10.1016/j.jpowsour.2016.04.095

Yuniarti. (2011). Sifat Kimia Tiga Jenis Kayu Rakyat (Chemical Components of Three Kinds of Social Forestry Timber). Jurnal Riset Industri Hasil Hutan, 3(1), 24–28.

Zhang, L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531. https://doi.org/10.1039/b813846j

Ziegler, A. F. and F. (2009). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(10), 160–177. https://doi.org/10.1002/bbb




DOI: https://doi.org/10.20886/jphh.2022.40.3.189-202

Refbacks

  • There are currently no refbacks.


JURNAL PENELITIAN HASIL HUTAN INDEXED BY:

More...


Copyright © 2015 | Jurnal Penelitian Hasil Hutan (JPHH, Journal of Forest Products Research)

eISSN : 2442-8957        pISSN : 0216-4329

       

JPHH is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.