KARAKTERISASI BIODIESEL DARI MINYAK KEMIRI SUNAN DENGAN KATALIS HETEROGEN SILIKA TERIMPREGNASI KALSIUM OKSIDA (CaO/SiO2)

Haryono Haryono, Yati B Yuliyati, Atiek Rostika Noviyanti, Mochammad Rizal, Sarifah Nurjanah

Abstract


Biodiesel komersial umumnya diproduksi dari minyak sawit yang telah menjadi kontroversi karena minyak sawit merupakan minyak pangan dan tanaman kelapa sawit memanfaatkan lahan subur.  Salah satu jenis minyak nabati potensial sebagai bahan baku pembuatan biodiesel adalah minyak kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw). Minyak kemiri sunan bersifat non-pangan sehingga tidak akan berkompetisi dengan kebutuhan pangan. Dalam pembentukan biodiesel, penggunaan katalis basa homogen pada tahap trans-esterifikasi berpotensi menimbulkan beberapa masalah, salah satunya akibat keberadaan asam lemak bebas (ALB). Penelitian ini bertujuan menyiapkan katalis padat heterogen berupa katalis SiO2 terimpregnasi CaO (CaO/SiO2), mempelajari pengaruh tahap esterifikasi terhadap perubahan kadar ALB minyak, dan menguji aktivitas katalis CaO/SiO2 pada tahap trans-esterifikasi dalam pembentukan biodiesel. Katalis CaO/SiO2 disiapkan dengan metode sol-gel dari bahan alam (cangkang telur dan sekam padi). Kadar ALB dari minyak kemiri sunan divariasikan melalui tahap esterifikasi selama 1; 1,5; dan 2 jam dengan bantuan katalis H2SO4. Sedangkan tahap trans-esterifikasi dilakukan pada suhu 60°C, rasio mol minyak terhadap metanol sebesar 1:9, lama reaksi dua jam, dan kadar katalis CaO/SiO2 sebanyak 3%. Hasil penelitian menunjukkan bahwa tahap esterifikasi selama 1; 1,5; dan 2 jam telah mampu menurunkan kadar ALB minyak dari 12,5% (tanpa esterifikasi) menjadi 0,65%; 0,58%; dan 0,54%. Biodiesel dari minyak kemiri sunan yang disintesis dengan bantuan katalis CaO/SiO2 pada kondisi optimal di tahap trans-esetrifikasi memenuhi standar SNI 7182-2015 mengenai biodiesel, untuk parameter densitas, viskositas, kadar air, bilangan iodin, dan bilangan cetana.


Keywords


Biodiesel; kadar ALB; katalis heterogen; minyak kemiri sunan; trans-esterifikasi

References


Almeida, D. T. de, Viana, T. V., Costa, M. M., Silva, C. de S., & Feitosa, S. (2019). Effects of different storage conditions on the oxidative stability of crude and refined palm oil, olein and stearin (Elaeis guineensis). Food Science and Technology, 39(suppl 1), 211–217. doi: 10.1590/fst.43317.

Azam, M. M., Waris, A., & Nahar, N. M. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29(4), 293–302. doi: 10.1016/j.biombioe.2005.05.001.

Standar Nasional Indonesia (SNI). (2015). Biodiesel (SNI 7182:2015). Badan Standardisasi Nasional, Jakarta.

Banković-Ilić, I. B., Miladinović, M. R., Stamenković, O. S., & Veljković, V. B. (2017). Application of nano CaO–based catalysts in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 72(December 2018), 746–760. doi: 10.1016/j.rser.2017.01.076.

Correia, L. M., Saboya, R. M. A., de Sousa Campelo, N., Cecilia, J. A., Rodríguez-Castellón, E., Cavalcante, C. L., & Vieira, R. S. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 151, 207–213. doi: 10.1016/j. biortech.2013.10.046.

Dauqan, E., & Sani, H. (2011). Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil and coconut oil) by gas chromatography. International Conference on Chemistry Engineering, 14, 31–34. doi: 10.4236/fns.2011.24036.

Dawodu, M. O., Olutona, G. O., & Obimakinde, S. O. (2015). Effect of temperature on the chemical characteristics of vegetable oils consumed in Ibadan, Nigeria. Pakistan Journal of Nutrition, 14(10), 698–707. doi: 10.3923/pjn. 2015.698.707.

Deutschmann, O., Knozinger, H., Kochloefl, K., & Turek, T. (2009). Heterogeneous catalysis and solid catalyst. Weinheim-Germany: Wiley-VCH Verlag GmbH & Co.

Djenar, N.S., & Lintang, N. (2012). Esterifikasi minyak kemiri sunan (Aleurites trisperma) dalam pembuatan biodiesel. Bionatura-Jurnal Ilmu Hayati dan Fisik, 14(3), 229–235.

Ghorbani, F., Sanati, A. M., & Maleki, M. (2015). Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environmental Studies of Persian Gulf, 2(1), 56–65.

Habibie, S., & Clarke, S. (2012). The current status and future development of biodiesel in Indonesia. Jurnal Sains dan Teknologi Indonesia, 14(1), 62–73.

Haruna, I., Fatima, M., & Ndam, V. (2015). Effect of high free fatty acid feedstock on methyl esters yield using bulk calcium oxide catalyst. International Journal of Scientific & Technology Research, 4(3), 186–189.

Haryono, Natanael, C. L., Rukiah, & Yuliyati, Y. B. (2018). Kalsium oksida mikropartikel dari cangkang telur sebagai katalis pada sintesis biodiesel dari minyak goreng bekas. Jurnal Material Dan Energi Indonesia, 8(1), 8–15.

Hendra, D. (2014). Pembuatan biodiesel dari biji kemiri sunan. Jurnal Penelitian Hasil Hutan, 32(1), 37–45.

Juan, J. C., D.A., K., Wu, T., & Taufiq. (2011). Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresource Technology, 2(102), 452–460.

Kim, M., Salley, S. O., & Ng, K. Y. S. (2008). Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst. Energy and Fuels, 22(6), 3594–3599. doi: 10.1021/ef800443x.

Knothe, G., Gerpen, J. V., & Krahl, J. (2005). The biodiesel handbook. Champaign-Illinois: : AOCS Press.

Kramadibrata, A. M., Muhaemin, M., Nurjanah, S., Mardawati, E., Daradjat, W., Hendarto, & Rosalinda, S. (2017). Rekayasa proses produksi biodiesel dan aplikasinya pada engine termodifikasi. Laporan Academic Leadhership Grant. Universitas Padjadjaran, Bandung.

Lani, N. S., Ngadi, N., Yahya, N. Y., & Rahman, R. A. (2017). Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. Journal of Cleaner Production, 146, 116–124. doi: 10.1016/j.jclepro.2016.06.058.

Le, N.T.H., & Jeong, H. . (2014). Synthesis and characterization of uniform silica nanoparticles on nickel substrate by spin coating and sol-gel method. Chemical Physics Letters, 349–354.

Loy, C. W., Matori, K. A., Lim, W. F., Schmid, S., Zainuddin, N., Wahab, Z. A., … & Zaid, M. H. M. (2016). Effects of Calcination on the Crystallography and Nonbiogenic Aragonite Formation of Ark Clam Shell under Ambient Condition. Advances in Materials Science and Engineering, 1(1). doi: 10.1155/2016/2914368.

Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., & Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules, 20(9), 17339–17361. doi: 10.3390/molecules 200917339.

Maneerung, T., Kawi, S., Dai, Y., & Wang, C.-H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, (123), 487–497.

Mat, R., Samsudin, R. A., Mohamed, M., & Johari, A. (2012). Solid catalysts and their application in biodiesel production. Bulletin of Chemical Reaction Engineering and Catalysis, 7(2), 142–149. doi: 10.9767/bcrec.7.2.3047.142-149.

Murugesan, A., Umarani, C., Subramanian, R., & Nedunchezhian, N. (2009). Biodiesel as an alternative fuel for diesel engines-A review. Renewable and Sustainable Energy Reviews, 3(13), 653–662.

Nurjanah, S., Kramadibrata, A. M., Muhaemin, M., Handarto, Herwanto, T., Saukat, M., … Haryono. (2019). Study on different capacity of transesterification process in biodiesel production from kemiri sunan (Reutalis trisperma). IOP Conference Series.: Earth Environmental Science, 1–10.

Pranowo, D., Syakir, M., Prastowo, B., Herman, M., Aunillah, A., & Sumanto. (2013). Pembuatan biodiesel dari kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) dan pemanfaatan hasil samping. Jakarta: IAARD Press.

Reyero, I., Arzamendi, G., & Gandía, L. M. (2014). Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chemical Engineering Research and Design, 92(8), 1519–1530. doi: 10.1016/j.cherd.2013.11.017.

Sanford, S., White, J., & Shah, P. (2009). Feedstock and biodiesel characteristics report. Renewable Energy Group Inc., 1–136. Diunduh dari http://www.biodiesel.org/reports/20091117_gen-398.pdf, pada 10 Oktober 2019.

Supriyadi, S., Purwanto, P., Anggoro, D. D., & Hermawan. (2018). Enhancing biodiesel from kemiri sunan oil manufacturing using ultrasonics. E3S Web of Conferences, 31, 1–5. doi: 10.1051/e3sconf/20183102014.

Tangboriboon, N., Kunanuruksapong, R., & Sirivat, A. (2012). Preparation and properties of calcium oxide from eggshells via calcination. Materials Science- Poland, 30(4), 313–322. doi: 10.2478/s13536-012-0055-7.

Witoon, T., Bumrungsalee, S., Vathavanichukul, P., Palitsakun, S., Saisriyoot, M., Faungnawakij, K. (2014). Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst. Bioresource Technology, (156), 329–334. doi: 10.1016/j.biortech.2014. 01.076.

Yamaguchi, N., Masuda, Y., Yamada, Y., Narusawa, H., Han-Cheol, C., Tamaki, Y., & Miyazaki, T. (2015). Synthesis of CaO-SiO compounds using materials extracted from industrial wastes. Open Journal of Inorganic Non-Metallic Materials, 05(01), 1–10. doi: 10.4236/ojinm.2015.51001.

Yan, S., Kim, M., Salley, S. O., & Simon, K. Y. (2009). Oil transesterification over calcium oxides modified with lanthanum. Applied Catalysis A: General, 360(2), 163–170. doi: 10.1016/j.apcata. 2009.03.015.




DOI: https://doi.org/10.20886/jphh.2020.38.1.10-20

Refbacks

  • There are currently no refbacks.


JURNAL PENELITIAN HASIL HUTAN INDEXED BY:

More...


Copyright © 2015 | Jurnal Penelitian Hasil Hutan (JPHH, Journal of Forest Products Research)

eISSN : 2442-8957        pISSN : 0216-4329

       

JPHH is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.